Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Маресин В.

Для каждого натурального  n > 1  существует такое число cn, что для любого x произведение синуса числа x, синуса числа  x + π/n,  синуса числа
x + /n,  ..., наконец, синуса числа  x + (n – 1)π/n  равно произведению числа cn на синус числа nx. Докажите это и найдите величину cn.

Вниз   Решение


В саду у Ани и Вити росло 2006 розовых кустов. Витя полил половину всех кустов, и Аня полила половину всех кустов. При этом оказалось, что ровно три куста, самые красивые, были политы и Аней, и Витей. Сколько розовых кустов остались не политыми?

ВверхВниз   Решение


Автор: Маресин В.

Один из простейших многоклеточных организмов — водоросль вольвокс — представляет собой сферическую оболочку, сложенную, в основном, семиугольными, шестиугольными и пятиугольными клетками (то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки). Бывают экземпляры, у которых есть и четырёхугольные, и восьмиугольные клетки, но биологи заметили, что если таких «нестандартных» клеток (менее чем с пятью и более чем с семью сторонами) нет, то пятиугольных клеток на 12 больше, чем семиугольных (всего клеток может быть несколько сотен и даже тысяч). Не можете ли вы объяснить этот факт?

ВверхВниз   Решение


Биссектрисы $AI$ и $CI$ пересекают описанную окружность треугольника $ABC$ в точках $A_1$, $C_1$ соответственно. Описанная окружность треугольника $AIC_1$ пересекает сторону $AB$ в точке $C_0$; аналогично определим $A_0$. Докажите, что точки $A_0,$ $A_1$, $C_0$, $C_1$ лежат на одной прямой.

ВверхВниз   Решение


Найдите число всех диаграмм Юнга с весом s, если
а)  s = 4;   б)  s = 5;   в)  s = 6;   г)  s = 7.
Определение диаграмм Юнга смотри в справочнике.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 61416  (#10.065)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Симметрические многочлены ]
Сложность: 4-
Классы: 9,10,11

Докажите неравенства:
  а)  x4 + y4 + z4x²yz + xy²z + xyz²;
  б)  x³ + y³ + z³ ≥ 3xyz;
  в)  x4 + y4 + z4 + t4 ≥ 4xyzt;
  г)   x5 + y5x³y² + x²y³.
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 61417  (#10.066)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Симметрические многочлены ]
Сложность: 3-
Классы: 10,11

  Определение. Пусть  α = (k, j, i)  – набор целых неотрицательных чисел,  k ≥ j ≥ i.  Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам  (a, b, c)  набора  (k, j, i).
  Аналогично определяются многочлены Tα для произвольного количества переменных/чисел в наборе α.
  Запишите через многочлены вида Tα неравенства
  а)  x4y + y4x ≥ x³y² + x²y³;
  б)  x³yz + y³xz + z³xy ≥ x²y²z + y²z²x + z²x²y.

Прислать комментарий     Решение

Задача 61418  (#10.067)

Тема:   [ Симметрические многочлены ]
Сложность: 3-
Классы: 9,10,11

Напишите многочлены Tα и нарисуйте соответствующие им диаграммы Юнга для следующих наборов α
  а)  (3, 2);    б)  (3, 2, 1);    в)  (3, 3, 0, 0);    г)  (4, 1, 1, 0).
Определение многочленов Tα смотри в задаче 61417, определение диаграмм Юнга в справочнике.

Прислать комментарий     Решение

Задача 61419  (#10.068)

Темы:   [ Раскладки и разбиения ]
[ Перебор случаев ]
Сложность: 2
Классы: 8,9,10

Найдите число всех диаграмм Юнга с весом s, если
а)  s = 4;   б)  s = 5;   в)  s = 6;   г)  s = 7.
Определение диаграмм Юнга смотри в справочнике.

Прислать комментарий     Решение

Задача 61420  (#10.069)

Темы:   [ Раскладки и разбиения ]
[ Отношение порядка ]
Сложность: 3+
Классы: 8,9,10,11

Докажите, что     тогда и только тогда, когда β можно получить из α проделав несколько (может быть один раз или ни одного) операции вида

(k,  j, i)   ↔   (k – 1,  j + 1, i),     (k,  j, i)   ↔   (k – 1, j, i + 1),     (k, j, i)   ↔ (k,  j – 1, i + 1).

(Эти операции можно представлять себе как сбрасывание одного кирпича вниз на диаграмме Юнга. Про диаграммы Юнга смотри здесь.)

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .