ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Постройте последовательность полиномов, которая получается, если метод Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена x² – x – 1. Какие последовательности будут сходиться к корням x1 и x2, если |x1| > |x2|? Каждая клетка таблицы размером 7×8 (7 строк и 8 столбцов) покрашена в один из трёх цветов: красный, жёлтый или зелёный. При этом в каждой строке красных клеток не меньше, чем жёлтых, и не меньше, чем зелёных, а в каждом столбце жёлтых клеток не меньше, чем красных, и не меньше, чем зелёных. Сколько зелёных клеток может быть в такой таблице?
В равнобедренном треугольнике ABC ( AB=BC ) высота AF
пересекает высоту BD в точке O , причём Угол бокового ребра с плоскостью основания правильной треугольной пирамиды равен α . Найдите угол боковой грани с плоскостью основания. Объём правильной четырёхугольной пирамиды SABCD равен V . Высота SP пирамиды является ребром правильного тетраэдра SPQR , плоскость грани PQR которого перпендикулярна ребру SC . Найдите объём общей части этих пирамид. Обозначим через Pk,l(n) количество разбиений числа n на не более чем k слагаемых, каждое из которых не превосходит l. |
Страница: << 14 15 16 17 18 19 20 [Всего задач: 100]
Найдите сумму Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x).
Обозначим через Pk,l(n) количество разбиений числа n на не более чем k слагаемых, каждое из которых не превосходит l.
Пусть fk,l(x) – производящая функция последовательности Pk,l(n) из задачи 61525: fk,l(x) = Pk,l(0) + xPk,l(1) + ... + xklPk,l(kl). а) Докажите равенства: fk,l(x) = fk–1,l(x) + xkfk,l–1(x) = fk,l–1(x) + xlfk–1,l(x). б) Докажите, что функции fk,l(x) совпадают с многочленами Гаусса gk,l(x) (определение многочленов Гаусса смотри здесь).
Докажите, что при любых k и l многочлен
gk,l(x) является возвратным, то есть
Докажите, что
Страница: << 14 15 16 17 18 19 20 [Всего задач: 100]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке