ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
классы:
|
|||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из десятизначного числа 2946835107 вычеркнули 5 цифр. Какое наибольшее число могло в результате этого получиться? Пусть ka ≡ kb (mod kn). Тогда a ≡ b (mod n). Кусок сыра имеет форму кубика 3×3×3, из которого вырезан центральный кубик. Мышь начинает грызть этот кусок сыра. Сначала она съедает некоторый кубик 1×1×1. После того, как мышь съедает очередной кубик 1×1×1, она приступает к съедению одного из соседних (по грани) кубиков с только что съеденным. Сможет ли мышь съесть весь кусок сыра? Суммы углов при вершинах A, C, E и B, D, F выпуклого
шестиугольника ABCDEF с равными сторонами равны. Докажите, что
противоположные стороны этого шестиугольника параллельны.
Даны 20 различных натуральных чисел, меньших 70. Докажите, что среди их попарных разностей найдутся четыре одинаковых. Группа туристов должна была прибыть на вокзал в 5 часов. К этому времени с турбазы за ними должен был прийти автобус. Однако, прибыв на вокзал в 3:10, туристы пошли пешком на турбазу. Встретив на дороге автобус, они сели в него и прибыли на турбазу на 20 минут раньше предусмотренного времени. С какой скоростью шли туристы до встречи с автобусом, если скорость автобуса 60 км/ч? В треугольнике ABC угол A равен
120o.
Докажите, что из отрезков длиной a, b, b + c можно составить треугольник.
Даны две окружности, одна из которых лежит внутри другой. Из произвольной точки C внешней окружности проведены касательные к внутренней, вторично пересекающие внешнюю в точках A и B. Найдите геометрическое место центров вписанных окружностей треугольников ABC. |
Страница: << 4 5 6 7 8 9 10 [Всего задач: 47]
В пространстве отмечены пять точек. Известно, что это центры сфер, четыре из которых попарно касаются извне и касаются изнутри пятой сферы. При этом невозможно определить, какая точка является центром объемлющей сферы. Найдите отношение радиусов наибольшей и наименьшей сферы.
Даны две окружности, одна из которых лежит внутри другой. Из произвольной точки C внешней окружности проведены касательные к внутренней, вторично пересекающие внешнюю в точках A и B. Найдите геометрическое место центров вписанных окружностей треугольников ABC.
Страница: << 4 5 6 7 8 9 10 [Всего задач: 47]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке