Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Найти все равнобедренные треугольники, которые нельзя разрезать на три равнобедренных треугольника с одинаковыми боковыми сторонами.

Вниз   Решение


Даны N синих и N красных палочек, причём сумма длин синих палочек равна сумме длин красных. Известно, что из синих палочек можно сложить N-угольник, и из красных – тоже. Всегда ли можно выбрать одну синюю и одну красную палочки и перекрасить их (синюю – в красный цвет, а красную – в синий) так, что снова из синих палочек можно будет сложить N-угольник, и из красных – тоже? Решите задачу
  а) для  N = 3;
  б) для произвольного натурального  N > 3.

ВверхВниз   Решение


В некотором множестве введена операция *, которая по каждым двум элементам a и b этого множества вычисляет некоторый элемент a*b этого множества. Известно, что: 1°. Для любых трех элементов a, b и c
          a*(b*c) = b*(c*a).
2°. Если a*b = a*c, то b = c.
3°. Если a*c = b*c, то a = b.

Докажите, что операция *
а) коммутативна, то есть для любых элементов a и b верно равенство a*b = b*a;
б) ассоциативна, то есть для любых элементов a, b и c верно равенство (a*b)*c = a*(b*c).

ВверхВниз   Решение


Автор: Tran Quang Hung

Пусть M – середина хорды AB окружности с центром O. Точка K симметрична M относительно O, P – произвольная точка окружности. Перпендикуляр к AB в точке A и перпендикуляр к PK в точке P пересекаются в точке Q. Точка H – проекция P на AB. Докажите, что прямая QB делит отрезок PH пополам.

ВверхВниз   Решение


Автор: Tran Quang Hung

В треугольник $ABC$ вписана окружность с центром $I$, касающаяся сторон $CA$, $AB$ в точках $E$, $F$ соответственно. Точки $M$, $N$ на прямой $EF$ таковы, что $CM=CE$ и $BN=BF$. Прямые $BM$ и $CN$ пересекаются в точке $P$. Докажите, что прямая $PI$ делит пополам отрезок $MN$.

ВверхВниз   Решение


Автор: Ивлев Ф.

Пусть I – центр вписанной окружности неравнобедренного треугольника ABC. Через A1 обозначим середину дуги BC описанной окружности треугольника ABC, не содержащей точки A, а через A2 – середину дуги BAC. Перпендикуляр, опущенный из точки A1 на прямую A2I, пересекает прямую BC в точке A'. Аналогично определяются точки B' и C'.
  а) Докажите, что точки A', B' и C' лежат на одной прямой.
  б) Докажите, что эта прямая перпендикулярна прямой OI, где O – центр описанной окружности треугольника ABC.

ВверхВниз   Решение


Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.

ВверхВниз   Решение


На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?

ВверхВниз   Решение


Докажите, что среди всех треугольников с фиксированным углом $ \alpha$ и площадью S наименьшую длину стороны BC имеет равнобедренный треугольник с основанием BC.

ВверхВниз   Решение


Основание пирамиды Хеопса — квадрат, а её боковые грани — равные равнобедренные треугольники. Буратино лазил наверх и измерил угол грани при вершине. Получилось 100o. Может ли так быть?

ВверхВниз   Решение


Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если  DE = 5 см.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 64539  (#9.1)

Темы:   [ Четность и нечетность ]
[ Задачи на проценты и отношения ]
Сложность: 2+

На доске записано несколько последовательных натуральных чисел. Ровно 52% из них – чётные. Сколько чётных чисел записано на доске?

Прислать комментарий     Решение

Задача 64540  (#9.2)

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Исследование квадратного трехчлена ]
[ Симметрия помогает решить задачу ]
Сложность: 3

На рисунке изображен график функции  y = x² + ax + b.  Известно, что прямая AB перпендикулярна прямой  y = x.
Найдите длину отрезка OC.

Прислать комментарий     Решение

Задача 64541  (#9.3)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол, опирающийся на диаметр ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+

В равнобедренный треугольник ABC  (AB = BC)  вписана окружность с центром O, которая касается стороны AB в точке E. На продолжении стороны AC за точку A выбрана точка D так, что  AD = ½ AC. Докажите, что прямые DE и AO параллельны.

Прислать комментарий     Решение

Задача 64542  (#9.4)

Темы:   [ Таблицы и турниры (прочее) ]
[ Комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+

В квадратной таблице размером 100×100 некоторые клетки закрашены. Каждая закрашенная клетка является единственной закрашенной клеткой либо в своем столбце, либо в своей строке. Какое наибольшее количество клеток может быть закрашено?

Прислать комментарий     Решение

Задача 64543  (#9.5)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3+

Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если  DE = 5 см.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .