Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Калинин А.

Одновременно из деревень A и Б навстречу друг другу вышли Аня и Боря (их скорости постоянны, но не обязательно одинаковы). Если бы Аня вышла на 30 минут раньше, то они встретились бы на 2 км ближе к деревне Б. Если бы Боря вышел на 30 минут раньше, то встреча состоялась бы ближе к деревне A. На сколько?

Вниз   Решение


Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.

ВверхВниз   Решение


В равенстве 101 – 102 = 1 передвиньте одну цифру так, чтобы оно стало верным.

ВверхВниз   Решение


Про приведённый многочлен  P(x) = xn + an–1xn–1 + ... + a1x + a0  с действительными коэффициентами известно, что при некотором натуральном
m ≥ 2  многочлен    имеет действительные корни, причём только положительные. Обязательно ли сам многочлен P(x) имеет действительные корни, причём только положительные?

ВверхВниз   Решение


Автор: Рожкова М.

В неравнобедренном треугольнике ABC проведены высота из вершины A и биссектрисы из двух других вершин.
Докажите, что описанная окружность треугольника, образованного этими тремя прямыми, касается биссектрисы, проведённой из вершины A.

ВверхВниз   Решение


Около окружности описан четырёхугольник. Его диагонали пересекаются в центре этой окружности. Докажите, что этот четырёхугольник — ромб.

ВверхВниз   Решение


Петя записал на компьютере число 1. Каждую секунду компьютер прибавляет к числу на экране сумму его цифр.
Может ли через какое-то время на экране появиться число 123456789?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 103771

Темы:   [ Неравенство треугольника (прочее) ]
[ Сумма длин диагоналей четырехугольника ]
[ Перебор случаев ]
Сложность: 2+
Классы: 6,7,8

В результате измерения четырёх сторон и одной из диагоналей некоторого четырёхугольника получились числа: 1; 2; 2,8; 5; 7,5. Чему равна длина измеренной диагонали?

Прислать комментарий     Решение


Задача 104877

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметика. Устный счет и т.п. ]
[ Перебор случаев ]
Сложность: 2+
Классы: 7,8,9

109 яблок разложены по пакетам. В некоторых пакетах лежит по x яблок, в других – по три яблока.
Найдите все возможные значения x, если всего пакетов – 20.

Прислать комментарий     Решение

Задача 104879

Тема:   [ Математическая логика (прочее) ]
Сложность: 3-
Классы: 6,7,8

В комнате 12 человек; некоторые из них честные, то есть всегда говорят правду, остальные всегда лгут. "Здесь нет ни одного честного человека", - сказал первый. "Здесь не более одного честного человека", - сказал второй. Третий сказал, что честных не более двух, четвёртый - что не более трёх, и так далее до двенадцатого, который сказал, что честных людей не более одиннадцати. Сколько честных людей в комнате на самом деле?
Прислать комментарий     Решение


Задача 64679

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Последовательности (прочее) ]
[ Арифметика остатков (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Петя записал на компьютере число 1. Каждую секунду компьютер прибавляет к числу на экране сумму его цифр.
Может ли через какое-то время на экране появиться число 123456789?

Прислать комментарий     Решение

Задача 104880

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 7,8,9

Два парома одновременно отходят от противоположных берегов реки и пересекают её перпендикулярно берегам. Скорости паромов постоянны, но не равны. Паромы встречаются на расстоянии 720 м от берега, после чего продолжают движение. На обратном пути они встречаются в 400 м от другого берега. Какова ширина реки?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .