ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Выпуклый n-угольник P, где n > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него. |
Страница: << 1 2 [Всего задач: 8]
В треугольнике ABC AA0 и BB0 – медианы, AA1 и BB1 – высоты. Описанные окружности треугольников CA0B0 и CA1B1 вторично пересекаются в точке Mc. Аналогично определяются точки Ma, Mb. Докажите, что точки Ma, Mb, Mc лежат на одной прямой, а прямые AMa, BMb, CMc параллельны.
В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть BC = DE. Докажите, что AB = EF.
Выпуклый n-угольник P, где n > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|