Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Четыре дома расположены по окружности. Где надо вырыть колодец, чтобы сумма расстояний от домов до колодца была наименьшей?

Вниз   Решение


Петя и Вася выписывают 12-значное число, ставя цифры по очереди, начиная со старшего разряда. Начинает Петя.

Докажите, что какие бы цифры он не писал, Вася всегда сможет добиться, чтобы получившееся число делилось на 9.

ВверхВниз   Решение


Две окружности имеют радиусы R1 и R2, а расстояние между их центрами равно d. Докажите, что эти окружности ортогональны тогда и только тогда, когда  d2 = R12 + R22.

ВверхВниз   Решение


В ряд выписаны в порядке возрастания числа, делящиеся на 9: 9, 18, 27, 36, ... . Под каждым числом этого ряда записана его сумма цифр.
  а) На каком месте во втором ряду впервые встретится число 81?
  б) Что встретится раньше: четыре раза подряд число 27 или один раз число 36?

ВверхВниз   Решение


100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



Задача 65087

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Автор: Храмцов Д.

Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая ломаная без самопересечений. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченной ею части доски общая площадь чёрных кусков равна общей площади белых кусков.

Прислать комментарий     Решение

Задача 65088

Темы:   [ Задачи на движение ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 8,9

Бизнесмен Борис Михайлович решил устроить с трактористом Васей гонки по шоссе. Поскольку его "Лексус" едет вдесятеро быстрее Васиного трактора, он дал Васе фору и выехал через час после Васи. После того, как Васин трактор проехал ровно половину запланированной трассы, у него отвалилась рессора, поэтому оставшуюся часть пути Вася проехал вдвое медленнее, чем первую. В результате встречи с Васиной рессорой Борису Михайловичу пришлось заехать в оказавшийся рядом сервис на 4 часа, после чего он продолжил путь вдвое медленнее, чем раньше. Докажите, что в результате он отстал от Васи не менее, чем на час.

Прислать комментарий     Решение

Задача 65089

Темы:   [ Произведения и факториалы ]
[ НОД и НОК. Взаимная простота ]
[ Процессы и операции ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида  a + d,  где d взаимно просто с а и  10 ≤ d ≤ 20.
Можно ли через несколько таких операций получить на доске число 18! ?

Прислать комментарий     Решение

Задача 65092

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9

Докажите, что для любого натурального числа  n > 1  найдутся такие натуральные числа a, b, c, d, что  a + b = c + d = ab – cd = 4n.

Прислать комментарий     Решение

Задача 65096

Темы:   [ Десятичная система счисления ]
[ Перестановки и подстановки (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .