ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждый день Фрёкен Бок испекает квадратный торт размером 3×3. Карлсон немедленно вырезает себе из него четыре квадратных куска размером 1×1 со сторонами, параллельными сторонам торта (не обязательно по линиям сетки 3×3). После этого Малыш вырезает себе из оставшейся части торта квадратный кусок со сторонами, также параллельными сторонам торта. На какой наибольший кусок торта может рассчитывать Малыш вне зависимости от действий Карлсона?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 65192  (#1)

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Существует ли такое натуральное число n, что числа n, n², n³ начинаются на одну и ту же цифру, отличную от единицы?

Прислать комментарий     Решение

Задача 65193  (#2)

Темы:   [ Последовательности (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10

По кругу в некотором порядке расставлены все натуральные числа от 1 до 1000 таким образом, что каждое из чисел является делителем суммы двух своих соседей. Известно, что рядом с числом k стоят два нечётных числа. Какой чётности может быть число k?
Прислать комментарий     Решение


Задача 65194  (#3)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 4-
Классы: 9,10

Каждый день Фрёкен Бок испекает квадратный торт размером 3×3. Карлсон немедленно вырезает себе из него четыре квадратных куска размером 1×1 со сторонами, параллельными сторонам торта (не обязательно по линиям сетки 3×3). После этого Малыш вырезает себе из оставшейся части торта квадратный кусок со сторонами, также параллельными сторонам торта. На какой наибольший кусок торта может рассчитывать Малыш вне зависимости от действий Карлсона?

Прислать комментарий     Решение

Задача 65195  (#4)

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Гомотетия помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 9,10

Точки O и I – центры описанной и вписанной окружностей неравнобедренного треугольника ABC. Две равные окружности касаются сторон AB, BC и AC, BC соответственно; кроме этого, они касаются друг друга в точке K. Оказалось, что K лежит на прямой OI. Найдите ∠BAC.

Прислать комментарий     Решение

Задача 65175  (#5)

Темы:   [ Математическая логика (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 9,10,11

Император пригласил на праздник 2015 волшебников, некоторые из которых добрые, а остальные злые. Добрый волшебник всегда говорит правду, а злой может говорить что угодно. При этом волшебники знают, кто добрый и кто злой, а император нет. На празднике император задаёт каждому волшебнику (в каком хочет порядке) по вопросу, на которые можно ответить "да" или "нет". Опросив всех волшебников, император изгоняет одного. Изгнанный волшебник выходит в заколдованную дверь, и император узнаёт, добрый он был или злой. Затем император вновь задает каждому из оставшихся волшебников по вопросу, вновь одного изгоняет, и так далее, пока император не решит остановиться (он может это сделать после любого вопроса). Докажите, что император может изгнать всех злых волшебников, удалив при этом не более одного доброго.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .