ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой. Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и никакие двое из одной группы не сидят за столом рядом.

Вниз   Решение


Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.

ВверхВниз   Решение


Известно, что  f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение  f(g(h(x)))  = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

ВверхВниз   Решение


Решите уравнение   1 + 1 : (1 + 1 : (1 + 1 : (x + 2016))) = (1,2)².

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 65653  (#7.1.1)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8,9

Сумма вычитаемого, уменьшаемого и разности равна 2016. Найдите уменьшаемое.

Прислать комментарий     Решение

Задача 65654  (#7.1.2)

Темы:   [ Четырехугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?

Прислать комментарий     Решение

Задача 65655  (#7.1.3)

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Может ли разность четвёртых степеней простых чисел быть простым числом?

Прислать комментарий     Решение

Задача 65656  (#7.2.1)

Тема:   [ Системы линейных уравнений ]
Сложность: 3
Классы: 7,8,9

Решите уравнение   1 + 1 : (1 + 1 : (1 + 1 : (x + 2016))) = (1,2)².

Прислать комментарий     Решение

Задача 65657  (#7.2.2)

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 7,8,9

На стороне ВС треугольника АВС отмечена точка E, а на биссектрисе BD – точка F таким образом, что  EF || AC  и  AF = AD.  Докажите, что  AВ = ВЕ.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .