|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой. Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и никакие двое из одной группы не сидят за столом рядом. Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя. Известно, что f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение f(g(h(x))) = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8? Решите уравнение 1 + 1 : (1 + 1 : (1 + 1 : (x + 2016))) = (1,2)². |
Страница: 1 2 3 >> [Всего задач: 12]
Сумма вычитаемого, уменьшаемого и разности равна 2016. Найдите уменьшаемое.
Существует ли такой четырёхугольник, что любая диагональ делит его на два тупоугольных треугольника?
Может ли разность четвёртых степеней простых чисел быть простым числом?
Решите уравнение 1 + 1 : (1 + 1 : (1 + 1 : (x + 2016))) = (1,2)².
На стороне ВС треугольника АВС отмечена точка E, а на биссектрисе BD – точка F таким образом, что EF || AC и AF = AD. Докажите, что AВ = ВЕ.
Страница: 1 2 3 >> [Всего задач: 12] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|