ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дано натуральное число $N$. Вера делает с ним следующие операции: сначала прибавляет 3 до тех пор, пока получившееся число не станет делиться на 5 (если изначально $N$ делится на 5, то ничего прибавлять не надо). Получившееся число Вера делит на 5. Далее делает эти же операции с новым числом, и так далее. Из каких чисел такими операциями нельзя получить 1? Федя К. вышел из некоторой точки, прошел 1км на север, затем
- 1км на восток, затем - 1км на юг и вернулся в исходную точку.
Пусть a, b, c — длины сторон треугольника; A, B, C — величины противоположных углов. Докажите, что
Aa + Bb + Cc
Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении. Дана трапеция ABCD с основаниями AD и BC. Перпендикуляр, опущенный из точки A на сторону CD, проходит через середину диагонали BD, а перпендикуляр, опущенный из точки D на сторону AB, проходит через середину диагонали AC. Докажите, что трапеция равнобокая. На клетчатой бумаге изобразите шестиугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.) |
Страница: 1 [Всего задач: 5]
В каком году родился венгерский математик Пол Эрдёш, если последняя цифра этого года в 3 раза меньше второй цифры и в 3 раза больше третьей?
В тридевятом царстве работают два обменных пункта. В первом дают за рубль 3000 тугриков, но берут 7000 тугриков комиссии за совершение обмена, а во втором за рубль дают только 2950 тугриков, но комиссию не берут. Турист заметил, что ему все равно, в каком из этих пунктов менять деньги. Сколько рублей он собирается поменять?
У каждого из тридцати шестиклассников есть одна ручка, один карандаш и одна линейка. После их участия в олимпиаде оказалось, что 26 учеников потеряли ручку, 23 – линейку и 21 – карандаш. Найдите наименьшее возможное количество шестиклассников, потерявших все три предмета.
На клетчатой бумаге изобразите шестиугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.)
Иван Царевич хочет выйти из круглой комнаты с шестью дверями, пять из которых заперты на ключ. За одну попытку он может проверить любые три двери, расположенные подряд, и если одна из них не заперта, то он в неё выйдет. После каждой попытки Баба-Яга запирает дверь, которая была открыта, и отпирает одну из соседних дверей. Какую именно, Иван Царевич не знает. Как ему действовать, чтобы наверняка выйти из комнаты?
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке