ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В треугольнике ABC угол B равен 60o, биссектрисы AD и CE пересекаются в точке O. Докажите, что OD = OE.

Вниз   Решение


Остроугольный равнобедренный треугольник ABC  (AB = AC)  вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.

ВверхВниз   Решение


Известно, что среди нескольких монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо), если монет
а) 100;
б) 99;
в) 98?

ВверхВниз   Решение


а) Есть 10 монет. Известно, что одна из них фальшивая (по весу тяжелее настоящих). Как за три взвешивания на чашечных весах без гирь определить фальшивую монету?
    б) Как определить фальшивую монету за три взвешивания, если монет 27?

ВверхВниз   Решение


Число x таково, что обе суммы  S = sin 64x + sin 65x  и  C = cos 64x + cos 65x  – рациональные числа.
Докажите, что в одной из этих сумм оба слагаемых рациональны.

ВверхВниз   Решение


На координатной плоскости нарисованы графики двух приведённых квадратных трёхчленов и две непараллельные прямые l1 и l2. Известно, что отрезки, высекаемые графиками на l1, равны, и отрезки, высекаемые графиками на l2, также равны. Докажите, что графики трёхчленов совпадают.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 66147  (#9.1)

Темы:   [ Ориентированные графы ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 8,9,10

В стране некоторые пары городов соединены односторонними прямыми авиарейсами (между любыми двумя городами есть не более одного рейса). Скажем, что город A доступен для города B, если из B можно долететь в A, возможно, с пересадками. Известно, что для любых двух городов P и Q существует город R, для которого и P, и Q доступны. Докажите, что существует город, для которого доступны все города страны. (Считается, что город доступен для себя.)

Прислать комментарий     Решение

Задача 66155  (#10.1)

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Квадратный трехчлен (прочее) ]
[ Перенос помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

На координатной плоскости нарисованы графики двух приведённых квадратных трёхчленов и две непараллельные прямые l1 и l2. Известно, что отрезки, высекаемые графиками на l1, равны, и отрезки, высекаемые графиками на l2, также равны. Докажите, что графики трёхчленов совпадают.

Прислать комментарий     Решение

Задача 66162  (#11.1)

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3+
Классы: 9,10,11

Число x таково, что обе суммы  S = sin 64x + sin 65x  и  C = cos 64x + cos 65x  – рациональные числа.
Докажите, что в одной из этих сумм оба слагаемых рациональны.

Прислать комментарий     Решение

Задача 66148  (#9.2)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9,10

Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведённая к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X, Y и Z лежат на одной прямой.

Прислать комментарий     Решение

Задача 66156  (#10.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 9,10,11

Остроугольный равнобедренный треугольник ABC  (AB = AC)  вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .