Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла ABC. По какой траектории движется середина этого отрезка?

Вниз   Решение


Автор: Фольклор

Прямоугольник разбили двумя прямыми, параллельными его сторонам, на четыре прямоугольника. Один из них оказался квадратом, а периметры прямоугольников, соседних с ним, равны 20 см и 16 см. Найдите площадь исходного прямоугольника.

ВверхВниз   Решение


Найдите m и n зная, что  

ВверхВниз   Решение


Дано число 100...01; число нулей в нём равно 1961. Докажите, что это число – составное.

ВверхВниз   Решение


Найдите наименьшее значение выражения а4а2 – 2а.

ВверхВниз   Решение


Четырехугольник ABCD выпуклый; точки  A1, B1, C1 и D1 таковы, что  AB||C1D1, AC||B1D1 и т. д. для всех пар вершин. Докажите, что четырехугольник  A1B1C1D1 тоже выпуклый, причем  $ \angle$A + $ \angle$C1 = 180o.

ВверхВниз   Решение


Внутри треугольника ABC взята точка X. Прямая AX пересекает описанную окружность в точке A1. В сегмент, отсекаемый стороной BC, вписана окружность, касающаяся дуги BC в точке A1, а стороны BC — в точке A2. Точки B2 и C2 определяются аналогично. Докажите, что прямые AA2, BB2 и CC2 пересекаются в одной точке.

ВверхВниз   Решение


Для всех действительных x и y выполняется равенство  f(x² + y) = f(x) + f(y²).  Найдите  f(–1).

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 53]      



Задача 66296

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9

Решите уравнение  (x + 1)² + (x + 2)² + ... + (x + 10)² = (x + 1 + 2 + ... + 10)².
Прислать комментарий     Решение


Задача 66349

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 9,10,11

В четырёхугольнике ABCD  AB = ВС = m,  ∠АВС = ∠АDС = 120°.  Найдите BD.

Прислать комментарий     Решение

Задача 66350

Темы:   [ Правило произведения ]
[ Комбинаторика орбит ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

В зале стоят шесть стульев в два ряда – по три стула в каждом, один ряд ровно за другим. В зал пришли шесть человек различного роста.
Сколькими способами можно рассадить их так, чтобы каждый человек, сидящий в первом ряду, был ниже человека, сидящего за ним?

Прислать комментарий     Решение

Задача 66354

Тема:   [ Функции. Непрерывность (прочее) ]
Сложность: 3+
Классы: 9,10,11

Для всех действительных x и y выполняется равенство  f(x² + y) = f(x) + f(y²).  Найдите  f(–1).

Прислать комментарий     Решение

Задача 66356

Темы:   [ Средние величины ]
[ Количество и сумма делителей числа ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Докажите, что среднее арифметическое всех делителей натурального числа n лежит на отрезке  

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .