ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Число p – корень кубического уравнения  x³ + x – 3 = 0.
Придумайте кубическое уравнение с целыми коэффициентами, корнем которого будет число p².

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



Задача 66360

Темы:   [ Уравнения высших степеней (прочее) ]
[ Целочисленные и целозначные многочлены ]
Сложность: 3
Классы: 9,10,11

Число p – корень кубического уравнения  x³ + x – 3 = 0.
Придумайте кубическое уравнение с целыми коэффициентами, корнем которого будет число p².

Прислать комментарий     Решение

Задача 66363

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 7,8,9

За контрольную работу каждый из 25 школьников получил одну из оценок "3", "4" или "5". На сколько больше было пятёрок, чем троек, если сумма всех оценок равна 106?

Прислать комментарий     Решение

Задача 66364

Тема:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 7,8,9

Из вершины прямого угла треугольника ABC проведена медиана СМ. Окружность, вписанная в треугольник САМ, касается СМ в её середине. Найдите угол ВАС.

Прислать комментарий     Решение

Задача 66365

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Можно ли раздать шести детям 40 конфет так, чтобы у всех было разное количество конфет и у каждых двух вместе было менее половины всех конфет?

Прислать комментарий     Решение

Задача 66366

Темы:   [ Алгебраические неравенства (прочее) ]
[ Дроби (прочее) ]
Сложность: 3
Классы: 7,8,9

Сравните и .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .