Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Докажите, что сумма расстояний от любой точки до всех вершин выпуклого четырёхугольника площади 1, не может быть меньше 2 .

Вниз   Решение


Боковая грань правильной четырёхугольной пирамиды образует с плоскостью основания угол 45o . Найдите угол между соседними боковыми гранями.

ВверхВниз   Решение


На плоскости даны n>1 точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?

ВверхВниз   Решение


На продолжениях сторон треугольника ABC взяты точки A1, B1 и C1 так, что  $ \overrightarrow{AB_1}$ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_1}$ = 2$ \overrightarrow{BC}$ и  $ \overrightarrow{CA_1}$ = 2$ \overrightarrow{AC}$. Найдите площадь треугольника A1B1C1, если известно, что площадь треугольника ABC равна S.

ВверхВниз   Решение


Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать?

ВверхВниз   Решение


а) Показать, что любой треугольник можно разрезать на несколько частей, из которых можно сложить прямоугольник;
б) показать, что любой прямоугольник можно разрезать на несколько частей, из которых можно сложить квадрат;
в) верно ли, что любой многоугольник можно разрезать на несколько частей, из которых можно сложить квадрат?

ВверхВниз   Решение


Четырехугольник ABCD без равных и без параллельных сторон описан около окружности с центром I. Точки K, L, M и N – середины сторон AB, BC, CD и DA. Известно, что ABCD=4IKIM. Докажите, что BCAD=4ILIN.

ВверхВниз   Решение


Многочлен степени  n>1  имеет n разных корней х1, х2, ..., хn. Его производная имеет корни y1, y2, ..., yn1. Докажите неравенство x21++x2nn>y21++y2n1n1.

ВверхВниз   Решение


Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром.

ВверхВниз   Решение


Автор: Фольклор

Доказать, что существует бесконечно много таких пар  (a, b)  натуральных чисел, что  a² + 1  делится на b, а  b² + 1  делится на a.

ВверхВниз   Решение


Автор: Кноп К.А.

Точка H лежит на стороне AB правильного пятиугольника ABCDE. Окружность с центром H и радиусом HE пересекает отрезки DE и CD в точках G и F соответственно. Известно, что DG=AH. Докажите, что CF=AH.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 66798  (#8.6)

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9,10,11

Автор: Кноп К.А.

Точка H лежит на стороне AB правильного пятиугольника ABCDE. Окружность с центром H и радиусом HE пересекает отрезки DE и CD в точках G и F соответственно. Известно, что DG=AH. Докажите, что CF=AH.
Прислать комментарий     Решение


Задача 66799  (#8.7)

Темы:   [ Теоремы Чевы и Менелая ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9,10,11

Дан треугольник ABC. На сторонах AB и BC взяты точки M и N так, что MNAC. Точки M и N симметричны соответственно точкам M и N относительно сторон BC и AB соответственно. Пусть MA пересекает BC в точке X, а NC пересекает AB в точке Y. Докажите, что точки A, C, X, Y лежат на одной окружности.
Прислать комментарий     Решение


Задача 66800  (#8.8)

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Белухов Н.

Найдите наименьшее натуральное k такое, что в любом выпуклом 1001-угольнике сумма длин любых k диагоналей не меньше суммы длин остальных диагоналей.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .