Страница: 1 2 >> [Всего задач: 8]
Задача
66793
(#8.1)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Трапеция с основаниями $AB$ и $CD$ вписана в окружность с центром $O$. Из точки $A$ к описанной окружности треугольника $CDO$ проведены касательные $AP$ и $AQ$. Докажите, что описанная окружность треугольника $APQ$ проходит через середину основания $AB$.
Задача
66794
(#8.2)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Внутри треугольника $ABC$ взята такая точка $M$, что $AM = \frac{1}{2} AB$, а $CM = \frac{1}{2} BC$. Точки $C_0$ и $A_0$ взяты на отрезках $AB$ и $CB$ соответственно, причем $BC_0 : AC_0 = BA_0 : CA_0 = 3$. Докажите, что $M$ равноудалена от $C_0$ и $A_0$.
Задача
66795
(#8.3)
|
|
Сложность: 4 Классы: 8,9,10,11
|
С помощью фанерного квадрата постройте правильный треугольник (можно проводить прямые через две точки, расстояние между которыми не превышает стороны квадрата, проводить перпендикуляр из точки на прямую, если расстояние между ними не превышает стороны квадрата, и откладывать на проведенных прямых отрезки, равные стороне или диагонали квадрата).
Задача
66796
(#8.4)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ точки $O$ и $H$ – центр описанной окружности и ортоцентр соответственно, $AB < AC$. Прямая, проходящая через середину $K$ отрезка $AH$ и перпендикулярная $OK$, пересекает сторону $AB$ и касательную к описанной окружности в точке $A$ в точках $X$ и $Y$ соответственно. Докажите, что $\angle XOY=\angle AOB$.
Задача
66797
(#8.5)
|
|
Сложность: 3 Классы: 8,9,10,11
|
На клетчатой бумаге нарисовали треугольник, один из углов которого равен $45^{\circ}$ (см.рис.). Найдите значения остальных углов.

Страница: 1 2 >> [Всего задач: 8]