ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Секретная база окружена прозрачным извилистым забором в форме невыпуклого многоугольника, снаружи – болото. Через болото проложена прямая линия электропередач из 36 столбов, часть из которых стоит снаружи базы, а часть – внутри. (Линия электропередач не проходит через вершины забора.) Шпион обходит базу снаружи вдоль забора так, что забор всё время по правую руку от него. Каждый раз, оказавшись на линии электропередач, он считает, сколько всего столбов находится по левую руку от него (он их все видит). К моменту, когда шпион обошёл весь забор, он насчитал в сумме 2015 столбов. Сколько столбов находится внутри базы?

Вниз   Решение


Когда мальчик Клайв подошел к дедушкиным настенным часам с кукушкой, на них было 12 часов 5 минут. Клайв стал крутить пальцем минутную стрелку, пока часовая не вернулась на прежнее место. Сколько "ку-ку" насчитал за это время дедушка в соседней комнате?

ВверхВниз   Решение


Автор: Кноп К.А.

Окружности $\alpha$ и $\beta$ с центрами в точках $A$ и $B$ соответственно пересекаются в точках $C$ и $D$. Отрезок $AB$ пересекает окружности $\alpha$ и $\beta$ в точках $K$ и $L$ соответственно. Луч $DK$ вторично пересекает окружность $\beta$ в точке $N$, а луч $DL$ вторично пересекает окружность $\alpha$ в точке $M$. Докажите, что точка пересечения диагоналей четырёхугольника $KLMN$ совпадает с центром вписанной окружности треугольника $ABC$.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 66882  (#1)

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Даны $n$ натуральных чисел. Боря для каждой пары этих чисел записал на чёрную доску их среднее арифметическое, а на белую доску — их среднее геометрическое, и для каждой пары хотя бы одно из этих двух средних было целым. Докажите, что хотя бы на одной из досок все числа целые.
Прислать комментарий     Решение


Задача 66883  (#2)

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 4
Классы: 8,9,10,11

Автор: Ивлев Ф.

Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон?
Прислать комментарий     Решение


Задача 66884  (#3)

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10,11

Автор: Кноп К.А.

Окружности $\alpha$ и $\beta$ с центрами в точках $A$ и $B$ соответственно пересекаются в точках $C$ и $D$. Отрезок $AB$ пересекает окружности $\alpha$ и $\beta$ в точках $K$ и $L$ соответственно. Луч $DK$ вторично пересекает окружность $\beta$ в точке $N$, а луч $DL$ вторично пересекает окружность $\alpha$ в точке $M$. Докажите, что точка пересечения диагоналей четырёхугольника $KLMN$ совпадает с центром вписанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 66880  (#4)

Темы:   [ Теория графов (прочее) ]
[ Теория игр (прочее) ]
Сложность: 5
Классы: 8,9,10,11

За каждым из двух круглых столиков сидит по $n$ гномов. Каждый дружит только со своими соседями по столику слева и справа. Добрый волшебник хочет рассадить гномов за один круглый стол так, чтобы каждые два соседних гнома дружили между собой. Он имеет возможность подружить $2n$ пар гномов (гномы в паре могут быть как с одного столика, так и с разных), но после этого злой волшебник поссорит между собой $n$ пар гномов из этих $2n$ пар. При каких $n$ добрый волшебник может добиться желаемого, как бы ни действовал злой волшебник?
Прислать комментарий     Решение


Задача 66886  (#5)

Тема:   [ Разрезания (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Существует ли прямоугольник, который можно разрезать на 100 прямоугольников, которые все ему подобны, но среди которых нет двух одинаковых?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .