ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Некоторые клетки доски $100 \times 100$ покрашены в чёрный цвет. Во всех строках и столбцах, где есть чёрные клетки, их количество нечётно. В каждой строке, где есть чёрные клетки, поставим красную фишку в среднюю по счёту чёрную клетку. В каждом столбце, где есть чёрные клетки, поставим синюю фишку в среднюю по счёту чёрную клетку. Оказалось, что все красные фишки стоят в разных столбцах, а синие фишки — в разных строках. Докажите, что найдётся клетка, в которой стоят и синяя, и красная фишки.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 67018

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

У каждого из девяти натуральных чисел $n, 2n, 3n,\ldots,9n$ выписали первую слева цифру. Может ли при некотором натуральном $n$ среди девяти выписанных цифр быть не более четырёх различных?
Прислать комментарий     Решение


Задача 67019

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3
Классы: 8,9

Прямоугольники $ABCD$ и $DEFG$ расположены так, что точка $D$ лежит на отрезке $BF$, а точки $B$, $C$, $E$, $F$ лежат на одной окружности (см. рисунок). Докажите, что $\angle ACE = \angle CEG$.

Прислать комментарий     Решение

Задача 67020

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10,11

Коллекция Саши состоит из монет и наклеек, причём монет меньше, чем наклеек, но хотя бы одна есть. Саша выбрал некоторое положительное число $t>1$ (не обязательно целое). Если он увеличит количество монет в $t$ раз, не меняя количества наклеек, то в его коллекции будет $100$ предметов. Если вместо этого он увеличит количество наклеек в $t$ раз, не меняя количества монет, то у него будет $101$ предмет. Сколько наклеек могло быть у Саши? Найдите все возможные ответы и докажите, что других нет.
Прислать комментарий     Решение


Задача 67021

Темы:   [ Таблицы и турниры (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10

Некоторые клетки доски $100 \times 100$ покрашены в чёрный цвет. Во всех строках и столбцах, где есть чёрные клетки, их количество нечётно. В каждой строке, где есть чёрные клетки, поставим красную фишку в среднюю по счёту чёрную клетку. В каждом столбце, где есть чёрные клетки, поставим синюю фишку в среднюю по счёту чёрную клетку. Оказалось, что все красные фишки стоят в разных столбцах, а синие фишки — в разных строках. Докажите, что найдётся клетка, в которой стоят и синяя, и красная фишки.
Прислать комментарий     Решение


Задача 67022

Темы:   [ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 9,10,11

Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны.
Докажите, что радиусы вписанных окружностей двух исходных треугольников также равны.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .