ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике $ABC$ высоты $BE$ и $CF$ пересекаются в точке $H$, точка $M$ — середина стороны $BC$, а $X$ — точка пересечения внутренних касательных к окружностям, вписанным в треугольники $BMF$ и $CME$. Докажите, что точки $X$, $M$ и $H$ лежат на одной прямой.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 29]      



Задача 67202  (#2)

Темы:   [ Логика и теория множеств (прочее) ]
[ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Оценка + пример ]
Сложность: 4
Классы: 10,11

Какое наименьшее количество различных целых чисел нужно взять, чтобы среди них можно было выбрать как геометрическую, так и арифметическую прогрессию длины 5?
Прислать комментарий     Решение


Задача 67203  (#3)

Темы:   [ Проектирование помогает решить задачу ]
[ Вписанные и описанные окружности ]
Сложность: 5
Классы: 10,11

В треугольнике $ABC$ высоты $BE$ и $CF$ пересекаются в точке $H$, точка $M$ — середина стороны $BC$, а $X$ — точка пересечения внутренних касательных к окружностям, вписанным в треугольники $BMF$ и $CME$. Докажите, что точки $X$, $M$ и $H$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 67204  (#4)

Темы:   [ Обратные тригонометрические функции ]
[ Взвешивания ]
Сложность: 5
Классы: 10,11

Имеются абсолютно точные двухчашечные весы и набор из 50 гирь, веса которых равны $\operatorname{arctg} 1$, $\operatorname{arctg} \frac{1}{2}$, $\operatorname{arctg} \frac{1}{3}$, $\ldots$, $\operatorname{arctg}\frac{1}{50}$. Докажите, что можно выбрать 10 из них и разложить по 5 гирь на разные чаши весов так, чтобы установилось равновесие.
Прислать комментарий     Решение


Задача 67205  (#5)

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Классические неравенства ]
[ Степень вершины ]
Сложность: 5
Классы: 10,11

В выпуклом многограннике обозначим через B, P и T соответственно число вершин, рёбер и максимальное число треугольных граней, которые имеют общую вершину. Докажите, что {$\text{В}\sqrt{\text{Р}+\text{Т}}\geqslant 2\text{Р}$}.

Например, для тетраэдра ($\text{В}=4$, $\text{Р}=6$, $\text{Т}=3$) выполняется равенство, а для треугольной призмы ($\text{В}=6$, $\text{Р}=9$, $\text{Т}=1$) или куба ($\text{В}=8$, $\text{Р}=12$, $\text{Т}=0$) имеет место строгое неравенство.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .