ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность разбита точками A1, A2,..., An на Докажите, что если для каждой точки разбиения Ak можно указать две непересекающиеся одинаково окрашенные дуги с общим |
Страница: 1 [Всего задач: 4]
Около окружности описан многоугольник. Точки касания его сторон с окружностью служат вершинами второго, вписанного в эту окружность многоугольника. Докажите, что произведение расстояний от произвольной точки M окружности до сторон (или их продолжений) одного многоугольника равно произведению расстояний от этой точки до сторон (или их продолжений) второго.
При каких натуральных n ≥ 2 неравенство выполняется для любых действительных чисел x1, x2, ..., xn, если
Назовём квартетом четвёрку клеток на клетчатой бумаге, центры которых лежат в вершинах прямоугольника со сторонами, параллельными линиям сетки. (Например, на рисунке нарисованы три квартета.) Какое наибольшее число квартетов можно разместить в
Докажите, что если для каждой точки разбиения Ak можно указать две непересекающиеся одинаково окрашенные дуги с общим
Страница: 1 [Всего задач: 4] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|