ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 52519  (#М256)

Темы:   [ Вписанные и описанные многоугольники ]
[ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9

Около окружности описан многоугольник. Точки касания его сторон с окружностью служат вершинами второго, вписанного в эту окружность многоугольника. Докажите, что произведение расстояний от произвольной точки M окружности до сторон (или их продолжений) одного многоугольника равно произведению расстояний от этой точки до сторон (или их продолжений) второго.

Прислать комментарий     Решение

Задача 73792  (#М257)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Замена переменных ]
[ Геометрические интерпретации в алгебре ]
Сложность: 4
Классы: 9,10,11

При каких натуральных  n ≥ 2  неравенство     выполняется для любых действительных чисел x1, x2, ..., xn, если
  а)  p = 1;
  б)  p = 4/3;
  в)  p = 6/5?

Прислать комментарий     Решение

Задача 73794  (#М259)

Темы:   [ Замощения костями домино и плитками ]
[ Деление с остатком ]
[ Четность и нечетность ]
Сложность: 4
Классы: 7,8,9

Назовём квартетом четвёрку клеток на клетчатой бумаге, центры которых лежат в вершинах прямоугольника со сторонами, параллельными линиям сетки. (Например, на рисунке нарисованы три квартета.) Какое наибольшее число квартетов можно разместить в
  а) квадрате 5×5;
  б) прямоугольнике m×n клеток?

Прислать комментарий     Решение

Задача 73795  (#М260)

Темы:   [ Раскраски ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Индукция в геометрии ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Периодичность и непериодичность ]
Сложность: 7-
Классы: 8,9,10

Окружность разбита точками A1, A2,..., An на n равных дуг, каждая из которых окрашена в какой-то цвет. Две дуги окружности (с концами в точках разбиения) называем одинаково окрашенными, если при некотором повороте окружности одна из них полностью, включая цвета всех дуг, совпадает с другой. (Например, на рисунке дуги A2A6 и A6A10 одинаково окрашены.)

Докажите, что если для каждой точки разбиения Ak можно указать две непересекающиеся одинаково окрашенные дуги с общим концом Ak, то всю окружность можно разбить на несколько одинаково окрашенных дуг, то есть окраска периодическая. Рассмотрите сначала случай, когда красок всего две, скажем красная и чёрная.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .