|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть уравнение x³ + px + q = 0 имеет корни x1, x2 и x3. Выразите через p и q дискриминант этого уравнения D = (x1 – x2)²(x² – x3)²(x3 – x1)². Двое одновременно отправились из A в B. Первый поехал на велосипеде, второй – на автомобиле со скоростью, в пять раз большей скорости первого. На полпути с автомобилем произошла авария, и оставшуюся часть пути автомобилист прошел пешком со скоростью, в два раза меньшей скорости велосипедиста. Кто из них раньше прибыл в B? Пусть a и b – два положительных числа, причём a < b. Построим по этим числам две последовательности {an} и {bn} по правилам: a0 = a, b0 = b, an+1 =
Докажите, что обе эти последовательности имеют один и тот же предел. Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается μ(a, b). Через точку P, лежащую вне окружности, проводятся всевозможные прямые, пересекающие эту окружность. Найти множество середин хорд, отсекаемых окружностью на этих прямых. |
Страница: 1 2 3 4 5 >> [Всего задач: 21]
Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.
Страница: 1 2 3 4 5 >> [Всего задач: 21] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|