ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки? Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов. Доказать, что при любом целом положительном n сумма
В последовательности 19752... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр. Встретится ли в этой последовательности: Из точки M описанной окружности треугольника ABC опущены
перпендикуляры MP и MQ на прямые AB и AC. При каком
положении точки M длина отрезка PQ максимальна?
Найти такие отличные от нуля неравные между собой целые числа a, b, c, чтобы выражение x(x – a)(x – b)(x – c) + 1 разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами. |
Страница: 1 2 >> [Всего задач: 6]
Доказать, что из шести попарно различных по величине квадратов нельзя сложить прямоугольник.
Некоторое количество точек расположено на плоскости так, что каждые 3 из них можно заключить в круг радиуса r = 1. Доказать, что тогда и все точки можно заключить в круг радиуса 1.
Найти такие отличные от нуля неравные между собой целые числа a, b, c, чтобы выражение x(x – a)(x – b)(x – c) + 1 разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами.
Решить в целых числах уравнение x + y = x² – xy + y².
В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке