ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дано натуральное число $N$. Вера делает с ним следующие операции: сначала прибавляет 3 до тех пор, пока получившееся число не станет делиться на 5 (если изначально $N$ делится на 5, то ничего прибавлять не надо). Получившееся число Вера делит на 5. Далее делает эти же операции с новым числом, и так далее. Из каких чисел такими операциями нельзя получить 1? Федя К. вышел из некоторой точки, прошел 1км на север, затем
- 1км на восток, затем - 1км на юг и вернулся в исходную точку.
Пусть a, b, c — длины сторон треугольника; A, B, C — величины противоположных углов. Докажите, что
Aa + Bb + Cc
Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении. Дана трапеция ABCD с основаниями AD и BC. Перпендикуляр, опущенный из точки A на сторону CD, проходит через середину диагонали BD, а перпендикуляр, опущенный из точки D на сторону AB, проходит через середину диагонали AC. Докажите, что трапеция равнобокая. На клетчатой бумаге изобразите шестиугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.) Если число |
Страница: 1 [Всего задач: 3]
Если число
Доказать без помощи таблиц, что
Даны две треугольные пирамиды ABCD и A'BCD с общим основанием BCD, причем точка A' лежит внутри пирамиды ABCD. Доказать, что сумма плоских углов при вершине A' пирамиды A'BCD больше суммы плоских углов при вершине A пирамиды ABCD.
Страница: 1 [Всего задач: 3]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке