Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Дано натуральное число $N$. Вера делает с ним следующие операции: сначала прибавляет 3 до тех пор, пока получившееся число не станет делиться на 5 (если изначально $N$ делится на 5, то ничего прибавлять не надо). Получившееся число Вера делит на 5. Далее делает эти же операции с новым числом, и так далее. Из каких чисел такими операциями нельзя получить 1?

Вниз   Решение


Федя К. вышел из некоторой точки, прошел 1км на север, затем - 1км на восток, затем - 1км на юг и вернулся в исходную точку.
  а) Где такое могло произойти?
  б) Найдите все такие точки на Земле.

ВверхВниз   Решение


Пусть a, b, c — длины сторон треугольника; A, B, C — величины противоположных углов. Докажите, что

Aa + Bb + Cc$\displaystyle \ge$$\displaystyle {\textstyle\frac{1}{2}}$$\displaystyle \left(\vphantom{ Ab+Ba+Ac+Ca+Bc+Cb}\right.$Ab + Ba + Ac + Ca + Bc + Cb$\displaystyle \left.\vphantom{ Ab+Ba+Ac+Ca+Bc+Cb}\right)$.

ВверхВниз   Решение


Точки Е и F – середины сторон ВС и AD выпуклого четырёхугольника АВСD. Докажите, что отрезок EF делит диагонали АС и BD в одном и том же отношении.

ВверхВниз   Решение


Дана трапеция ABCD с основаниями AD и BC. Перпендикуляр, опущенный из точки A на сторону CD, проходит через середину диагонали BD, а перпендикуляр, опущенный из точки D на сторону AB, проходит через середину диагонали AC. Докажите, что трапеция равнобокая.

ВверхВниз   Решение


На клетчатой бумаге изобразите шестиугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.)

ВверхВниз   Решение


Если число     – целое, то и число     – целое. Доказать.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 77870

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9,10

Если число     – целое, то и число     – целое. Доказать.

Прислать комментарий     Решение

Задача 77871

Тема:   [ Логарифмические неравенства ]
Сложность: 4
Классы: 10,11

Доказать без помощи таблиц, что

$\displaystyle {\frac{1}{\log_2\pi}}$ + $\displaystyle {\frac{1}{\log_5\pi}}$ > 2.

Прислать комментарий     Решение

Задача 77872

Темы:   [ Неравенства с трехгранными углами ]
[ Пирамида (прочее) ]
[ Неравенства с углами ]
Сложность: 4
Классы: 10,11

Даны две треугольные пирамиды ABCD и A'BCD с общим основанием BCD, причем точка A' лежит внутри пирамиды ABCD. Доказать, что сумма плоских углов при вершине A' пирамиды A'BCD больше суммы плоских углов при вершине A пирамиды ABCD.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .