ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано n окружностей: O1, O2,...On, проходящих через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3,..., O3 с O1 обозначим соответственно через A1, A2,..., An. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадает с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Продолжая таким образом, мы получим точку Bn на окружности On. Если On не совпадает с An, то проводим через Bn и An прямую до второго пересечения с O1 в точке Bn + 1. Докажите, что Bn + 1 совпадает с B1.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 77905

Тема:   [ Тригонометрические неравенства ]
Сложность: 3
Классы: 10,11

Пусть A — произвольный угол, B и C — острые углы. Всегда ли существует такой угол X, что

sin X = $\displaystyle {\frac{\sin B\sin C}{1-\cos A\cos B\cos C}}$?

(Из `` Воображаемой геометрии'' Н. И. Лобачевского).
Прислать комментарий     Решение

Задача 77908

Темы:   [ Иррациональные уравнения ]
[ Формулы сокращенного умножения (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
[ Уравнения с модулями ]
Сложность: 3+
Классы: 9,10

Решить уравнение:   + = 1.

Прислать комментарий     Решение

Задача 77907

Темы:   [ Взвешивания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Имеется 81 гиря весом 12 г, 22 г, 32 г, ..., 812 г. Разложить их на 3 равные по весу кучи.
Прислать комментарий     Решение


Задача 77909

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9

Дано n окружностей: O1, O2,...On, проходящих через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3,..., O3 с O1 обозначим соответственно через A1, A2,..., An. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадает с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Продолжая таким образом, мы получим точку Bn на окружности On. Если On не совпадает с An, то проводим через Bn и An прямую до второго пересечения с O1 в точке Bn + 1. Докажите, что Bn + 1 совпадает с B1.
Прислать комментарий     Решение


Задача 77906

Темы:   [ Малые шевеления ]
[ Примеры и контрпримеры. Конструкции ]
[ Тетраэдр (прочее) ]
Сложность: 4+
Классы: 10,11

Из двух треугольных пирамид с общим основанием одна лежит внутри другой. Может ли быть сумма ребер внутренней пирамиды больше суммы ребер внешней?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .