|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Треугольник ABC вписан в окружность. Через точку A проведены хорды, пересекающие сторону BC в точках K и L и дугу BC в точках M и N. Разрежьте изображённую на левом рисунке фигуру на две одинаковые части.
В вершинах правильного 12-угольника расставлены числа 1 и –1 так, что во всех вершинах, кроме одной, стоят единицы. Разрешается изменять знак в любых k подряд идущих вершинах. Можно ли такими операциями добиться того, чтобы единственное число –1 сдвинулось в соседнюю с исходной вершину, если а) k = 3; б) k = 4; в) k = 6. Докажите, что многочлен x12 – x9 + x4 – x + 1 при всех значениях x положителен. |
Страница: 1 2 3 4 >> [Всего задач: 19]
Докажите, что многочлен x12 – x9 + x4 – x + 1 при всех значениях x положителен.
Что больше
Страница: 1 2 3 4 >> [Всего задач: 19] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|