ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]      



Задача 78223

Темы:   [ Невыпуклые многоугольники ]
[ Принцип Дирихле (углы и длины) ]
[ Композиции поворотов ]
Сложность: 4+
Классы: 8,9,10

Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны.
Прислать комментарий     Решение


Задача 78233

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 5-
Классы: 8,9,10

В квадрате со стороной 100 расположено N кругов радиуса 1, причём всякий отрезок длины 10, целиком расположенный внутри квадрата, пересекает хотя бы один круг. Доказать, что N$ \ge$400.

Примечание Problems.Ru: Рассматриваются открытые круги, то есть круги без ограничивающей их окружности.
Прислать комментарий     Решение


Задача 78217

Темы:   [ ГМТ в пространстве (прочее) ]
[ Выпуклые многоугольники ]
[ Скрещивающиеся прямые и ГМТ ]
Сложность: 5
Классы: 10,11

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.
Прислать комментарий     Решение


Задача 78230

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 5
Классы: 10,11

Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .