ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Окружность радиуса, равного высоте некоторого правильного треугольника, катится по стороне этого треугольника. Доказать, что дуга, высекаемая сторонами треугольника на окружности, всё время равна 60o. Некоторые из чисел a1, a2,...an равны +1, остальные равны -1. Доказать, что
n точек соединены отрезками так, что каждая точка с чем-нибудь соединена и нет таких двух точек, которые соединялись бы двумя разными путями.
Верно ли, что любой треугольник можно разбить на четыре равнобедренных треугольника? Точки A и B движутся равномерно и с равными угловыми скоростями по окружностям O1 и O2 соответственно (по часовой стрелке). Доказать, что вершина C правильного треугольника ABC также движется равномерно по некоторой окружности. |
Страница: 1 [Всего задач: 5]
Точки A и B движутся равномерно и с равными угловыми скоростями по окружностям O1 и O2 соответственно (по часовой стрелке). Доказать, что вершина C правильного треугольника ABC также движется равномерно по некоторой окружности.
В клетки таблицы m×n вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.
n точек соединены отрезками так, что каждая точка с чем-нибудь соединена и нет таких двух точек, которые соединялись бы двумя разными путями.
a, b, p – любые целые числа. Доказать, что найдутся такие взаимно простые k, l, что ak + bl делится на p.
Коля и Петя делят 2n + 1 орехов, n
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке