ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5.

Вниз   Решение


В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники?

ВверхВниз   Решение


a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 83]      



Задача 30884  (#041)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9

Докажите неравенство   ¼ a² + b² + c² ≥ ab – ac + 2bc  при любых a, b, c.

Прислать комментарий     Решение

Задача 30885  (#042)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 8,9

k, l, m – натуральные числа. Докажите, что  2k+l + 2k+m + 2l+m ≤ 2k+l+m+1 + 1.

Прислать комментарий     Решение

Задача 78470  (#043)

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 2+
Классы: 7,8

a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

Прислать комментарий     Решение

Задача 30887  (#044)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Докажите, что     при любых x и y.

Прислать комментарий     Решение

Задача 30888  (#045)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

x, y > 0.  Докажите, что  

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .