ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На листе бумаги нанесена сетка из n горизонтальных и n вертикальных прямых. Сколько различных замкнутых 2n-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78502  (#1)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Доказать, что при нечётном n > 1 уравнение  xn + yn = zn  не может иметь решений в целых числах, для которых  x + y  – простое число.

Прислать комментарий     Решение

Задача 78503  (#2)

Темы:   [ Перестановки и подстановки (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Правило произведения ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 4-
Классы: 8,9,10

На листе бумаги нанесена сетка из n горизонтальных и n вертикальных прямых. Сколько различных замкнутых 2n-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым?

Прислать комментарий     Решение

Задача 78504  (#3)

Темы:   [ Неравенства с векторами ]
[ Наибольшая или наименьшая длина ]
[ Правильные многоугольники ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4-
Классы: 9,10,11

Из центра правильного 25-угольника проведены векторы во все его вершины.
Как надо выбрать несколько векторов из этих 25, чтобы их сумма имела наибольшую длину?

Прислать комментарий     Решение

Задача 78505  (#4)

Темы:   [ Средняя линия треугольника ]
[ Пятиугольники ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Отношение площадей подобных треугольников ]
[ Неравенства с площадями ]
Сложность: 5-
Классы: 8,9,10

A', B', C', D', E' — середины сторон выпуклого пятиугольника ABCDE. Доказать, что площади пятиугольников ABCDE и A'B'C'D'E' связаны соотношением:

SA'B'C'D'E'$\displaystyle \ge$$\displaystyle {\textstyle\frac{1}{2}}$SABCDE.

Прислать комментарий     Решение

Задача 78506  (#5)

Тема:   [ Рекуррентные соотношения ]
Сложность: 4
Классы: 9,10

Последовательность чисел a1, a2,..., an... образуется следующим образом:

a1 = a2 = 1; an = $\displaystyle {\frac{a_{n-1}^2+2}{a_{n-2}}}$        (n$\displaystyle \ge$3).

Доказать, что все числа в последовательности — целые.
Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .