ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В квадратном уравнении  x² + px + q  коэффициенты p, q независимо пробегают все значения от –1 до 1 включительно.
Найти множество значений, которые при этом принимает действительный корень данного уравнения.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



Задача 60949  (#06.026)

Темы:   [ Фазовая плоскость коэффициентов ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9,10

Фазовая плоскость Opq разбивается параболой  p² – 4q = 0  и прямыми  p + q + 1 = 0,  – 2p + q + 4 = 0  на несколько областей. Для точек каждой области укажите, сколько корней имеет соответствующий им многочлен  x² + px + q = 0  на интервале  (– 2, 1).

Прислать комментарий     Решение

Задача 60950  (#06.027)

Тема:   [ Фазовая плоскость коэффициентов ]
Сложность: 3+
Классы: 9,10

На фазовой плоскости через точку  (p, q)  проведены касательные к дискриминантной параболе  p² – 4q = 0.
Найдите координаты точек касания.

Прислать комментарий     Решение

Задача 60951  (#06.028)

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 3
Классы: 8,9,10

При каких значениях параметра a один из корней уравнения

(a2 + a + 1)x2 + (2a - 3)x + (a - 5) = 0

больше 1, а другой — меньше 1?

Прислать комментарий     Решение

Задача 78022  (#06.029)

Темы:   [ Исследование квадратного трехчлена ]
[ Средние величины ]
[ Квадратные уравнения. Теорема Виета ]
[ Фазовая плоскость коэффициентов ]
Сложность: 3
Классы: 8,9,10,11

Известно, что модули всех корней уравнений  x² + Ax + B = 0,  x² + Cx + D = 0  меньше единицы. Доказать, что модули корней уравнения
x² + ½ (A + C)x + ½ (B + D)x = 0  также меньше единицы. A, B, C, D – действительные числа.

Прислать комментарий     Решение

Задача 78565  (#06.030)

Темы:   [ Фазовая плоскость коэффициентов ]
[ Квадратные уравнения. Формула корней ]
[ Квадратные уравнения. Теорема Виета ]
[ Методы решения задач с параметром ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4-
Классы: 9,10,11

В квадратном уравнении  x² + px + q  коэффициенты p, q независимо пробегают все значения от –1 до 1 включительно.
Найти множество значений, которые при этом принимает действительный корень данного уравнения.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .