ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Имеется лабиринт, состоящий из n окружностей, касающихся прямой AB в точке M. Все окружности расположены по одну сторону от прямой, а их длины составляют геометрическую прогрессию со знаменателем 2. Два человека в разное время начали ходить по этому лабиринту. Их скорости одинаковы, а направления движения различны. Каждый из них проходит все окружности по порядку, и, пройдя наибольшую, снова идет в меньшую. Доказать, что они встретятся. |
Страница: 1 [Всего задач: 5]
Имеется лабиринт, состоящий из n окружностей, касающихся прямой AB в точке M. Все окружности расположены по одну сторону от прямой, а их длины составляют геометрическую прогрессию со знаменателем 2. Два человека в разное время начали ходить по этому лабиринту. Их скорости одинаковы, а направления движения различны. Каждый из них проходит все окружности по порядку, и, пройдя наибольшую, снова идет в меньшую. Доказать, что они встретятся.
Можно ли разрезать квадратный пирог на 9 равновеликих частей таким способом: выбрать внутри квадрата две точки и соединить каждую из них прямолинейными разрезами со всеми четырьмя вершинами квадрата? Если можно, то какие две точки нужно выбрать?
Дан треугольник ABC. Найдите на прямой AB точку M, для которой
сумма радиусов описанных окружностей треугольников ACM и BCM
была бы наименьшей.
Чему равна максимальная разность между соседними числами из числа тех, сумма цифр которых делится на 7?
Имеется 120-значное число. Его первые 12 цифр переставляются всеми возможными способами. Из полученных таким образом 120-значных чисел наугад выбирают 120 чисел. Доказать, что их сумма делится на 120.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке