ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Решите в целых числах уравнение xφn+1 + yφn. Все считали, что Дракон был однооким, двуухим, треххвостым, четырехлапым и пятииглым. На самом деле, только четыре из этих определений выстраиваются в определенную закономерность, а одно — лишнее. Какое? Эта старинная задача была известна еще в Древнем Риме. Имеется 68 монет, причём известно, что любые две монеты различаются по весу.
Разобьём все натуральные числа на группы так, чтобы в первой группе было одно число, во второй — два, в третьей — три и т.д. Можно ли это сделать таким образом, чтобы из суммы чисел в каждой группе нацело извлекался корень седьмой степени? Семь девяток выписали подряд: 9 9 9 9 9 9 9. Поставьте между некоторыми из них знаки «+» или «−», чтобы получившееся выражение равнялось 1989. Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?
Круглый пирог режут следующим образом. Вырезают сектор с углом Страна Фарра расположена на 1 000 000 000 островов. Между некоторыми островами каждый день курсируют пароходы. Маршруты пароходов устроены так, что с каждого острова можно попасть на любой другой (возможно, за несколько дней). Шпион и майор Пронин могут совершать не более одного рейса в день на пароходе и не имеют никакой другой возможности попасть с острова на остров. Шпион не ездит на пароходе 13 числа каждого месяца, майор Пронин не суеверен и всегда знает, где находится шпион. Доказать, что майор сможет поймать шпиона (т.е. оказаться с ним на одном острове). На бумажной ленте напечатаны автобусные билеты с номерами от 000 000 до 999 999. Затем синей краской пометили те билеты, у которых сумма цифр, стоящих на чётных местах, равна сумме цифр, стоящих на нечётных местах. Какая будет наибольшая разность между номерами двух соседних синих билетов? |
Страница: 1 [Всего задач: 5]
Разобьём все натуральные числа на группы так, чтобы в первой группе было одно число, во второй — два, в третьей — три и т.д. Можно ли это сделать таким образом, чтобы из суммы чисел в каждой группе нацело извлекался корень седьмой степени?
Две прямые на плоскости пересекаются под углом
Круглый пирог режут следующим образом. Вырезают сектор с углом
На бумажной ленте напечатаны автобусные билеты с номерами от 000 000 до 999 999. Затем синей краской пометили те билеты, у которых сумма цифр, стоящих на чётных местах, равна сумме цифр, стоящих на нечётных местах. Какая будет наибольшая разность между номерами двух соседних синих билетов?
Страна Фарра расположена на 1 000 000 000 островов. Между некоторыми островами каждый день курсируют пароходы. Маршруты пароходов устроены так, что с каждого острова можно попасть на любой другой (возможно, за несколько дней). Шпион и майор Пронин могут совершать не более одного рейса в день на пароходе и не имеют никакой другой возможности попасть с острова на остров. Шпион не ездит на пароходе 13 числа каждого месяца, майор Пронин не суеверен и всегда знает, где находится шпион. Доказать, что майор сможет поймать шпиона (т.е. оказаться с ним на одном острове).
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке