ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки A1, B1 и C1 симметричны центру описанной окружности треугольника ABC относительно его сторон. 2n радиусов разделили круг на 2n равных секторов: n синих и n красных, чередующихся в произвольном порядке. В синие сектора, начиная с некоторого, записывают против хода часовой стрелки числа от 1 до n. В красные сектора, начиная с некоторого, записывают те же числа, но по ходу часовой стрелки. Докажите, что найдётся полукруг, в котором записаны все числа от 1 до n. Доказать, что в выпуклый равносторонний (но не обязательно правильный) пятиугольник можно поместить правильный треугольник так, что одна из его сторон будет совпадать со стороной пятиугольника, а весь треугольник будет лежать внутри этого пятиугольника. Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон. а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры. б) Даны натуральные числа k и n, причём 1 < k < n. Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга? В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата? Лист клетчатой бумаги размером N×N раскрасили в N цветов. (Каждую клеточку закрасили одним из этих N цветов или не закрасили вообще). "Правильной" раскраской называется такая, что в каждом столбце и в каждой строке нет двух клеточек одинакового цвета. Можно ли докрасить лист "правильным" способом, если сначала было "правильно" закрашено
|
Страница: 1 [Всего задач: 5]
В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?
На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.
Лист клетчатой бумаги размером N×N раскрасили в N цветов. (Каждую клеточку закрасили одним из этих N цветов или не закрасили вообще). "Правильной" раскраской называется такая, что в каждом столбце и в каждой строке нет двух клеточек одинакового цвета. Можно ли докрасить лист "правильным" способом, если сначала было "правильно" закрашено
В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что отношение максимальной скорости полицейского и максимальной скорости гангстера равно: а) 0,5; б) 0,49; в) 0,34; г) ⅓. Сможет ли полицейский может бежать так, что в какой-то момент окажется на одной стороне с гангстером?
Доказать, что в выпуклый равносторонний (но не обязательно правильный) пятиугольник можно поместить правильный треугольник так, что одна из его сторон будет совпадать со стороной пятиугольника, а весь треугольник будет лежать внутри этого пятиугольника.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке