Страница: 1 [Всего задач: 5]
Задача
79258
(#1)
|
|
Сложность: 5 Классы: 9,10,11
|
Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых
десяти последовательных цифрах поменять местами первые пять с пятью следующими.
Два таких числа называются
похожими, если одно из них получается из другого
несколькими такими операциями. Какое наибольшее количество попарно непохожих
чисел можно выбрать?
Задача
79259
(#2)
|
|
Сложность: 4- Классы: 10
|
На бесконечной шахматной доске проведена замкнутая несамопересекающаяся
ломаная, проходящая по сторонам клеток. Внутри ломаной оказалось k чёрных
клеток. Какую наибольшую площадь может иметь фигура, ограниченная этой ломаной?
Задача
79260
(#3)
|
|
Сложность: 4- Классы: 9,10,11
|
Дано число A = , где M – натуральное число большее 2.
Доказать, что найдётся такое натуральное k, что
A = .
Задача
79261
(#4)
|
|
Сложность: 4 Классы: 9,10,11
|
В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973?
Задача
79262
(#5)
|
|
Сложность: 4 Классы: 10
|
В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что максимальная скорость гангстера равна 2,9
максимальной скорости полицейского. Полицейский хочет оказаться вместе с
гангстером на одной стороне квадрата. Всегда ли он сможет этого добиться?
Страница: 1 [Всего задач: 5]