Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Из десятизначного числа 2946835107 вычеркнули 5 цифр. Какое наибольшее число могло в результате этого получиться?

Вниз   Решение


Пусть  ka ≡ kb (mod kn).  Тогда  a ≡ b (mod n).

ВверхВниз   Решение


Кусок сыра имеет форму кубика 3×3×3, из которого вырезан центральный кубик. Мышь начинает грызть этот кусок сыра. Сначала она съедает некоторый кубик 1×1×1. После того, как мышь съедает очередной кубик 1×1×1, она приступает к съедению одного из соседних (по грани) кубиков с только что съеденным. Сможет ли мышь съесть весь кусок сыра?

ВверхВниз   Решение


Суммы углов при вершинах A, C, E и B, D, F выпуклого шестиугольника ABCDEF с равными сторонами равны. Докажите, что противоположные стороны этого шестиугольника параллельны.

ВверхВниз   Решение


Даны 20 различных натуральных чисел, меньших 70. Докажите, что среди их попарных разностей найдутся четыре одинаковых.

ВверхВниз   Решение


Группа туристов должна была прибыть на вокзал в 5 часов. К этому времени с турбазы за ними должен был прийти автобус. Однако, прибыв на вокзал в 3:10, туристы пошли пешком на турбазу. Встретив на дороге автобус, они сели в него и прибыли на турбазу на 20 минут раньше предусмотренного времени. С какой скоростью шли туристы до встречи с автобусом, если скорость автобуса 60 км/ч?

ВверхВниз   Решение


В треугольнике ABC угол A равен  120o. Докажите, что из отрезков длиной a, b, b + c можно составить треугольник.

ВверхВниз   Решение


Даны две окружности, одна из которых лежит внутри другой. Из произвольной точки C внешней окружности проведены касательные к внутренней, вторично пересекающие внешнюю в точках A и B. Найдите геометрическое место центров вписанных окружностей треугольников ABC.

ВверхВниз   Решение


Игра с 25-ю монетами. В ряд лежат 25 монет. За ход разрешается брать одну или две рядом лежащие монеты. Проигрывает тот, кому нечего брать.

ВверхВниз   Решение


Один из углов треугольника равен 120°. Докажите, что треугольник, образованный основаниями биссектрис данного, прямоугольный.

ВверхВниз   Решение


Доказать, что n-е простое число больше 3n при  n > 12.

ВверхВниз   Решение


Две одинаковые шестерёнки имеют по 92 зубца. Их совместили и спилили одновременно 10 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



Задача 79282

Темы:   [ Системы точек ]
[ Касающиеся окружности ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4-
Классы: 7,8,9

На плоскости расположено N точек. Отметим середины всевозможных отрезков с концами в этих точках. Какое наименьшее число отмеченных точек может получиться?
Прислать комментарий     Решение


Задача 79270

Темы:   [ Поворот (прочее) ]
[ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.
Прислать комментарий     Решение


Задача 79275

Темы:   [ Поворот (прочее) ]
[ Принцип Дирихле (углы и длины) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10

Две одинаковые шестерёнки имеют по 92 зубца. Их совместили и спилили одновременно 10 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.
Прислать комментарий     Решение


Задача 79281

Тема:   [ Процессы и операции ]
Сложность: 4-
Классы: 8

Несколько стеклянных шариков разложено в три кучки. Мальчик, располагающий неограниченным запасом шариков, может за один ход взять по одному шарику из каждой кучки или же добавить из своего запаса в одну из кучек столько шариков, сколько в ней уже есть. Доказать, что за несколько ходов мальчик может добиться того, что в каждой кучке не останется ни одного шарика.
Прислать комментарий     Решение


Задача 79285

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 7,8,9

Сумма 100 натуральных чисел, каждое из которых не больше 100, равна 200.
Доказать, что из них можно выбрать несколько чисел, сумма которых равна 100.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .