|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике ABC проведена медиана AM. По двум скрещивающимся прямым скользят два отрезка. Доказать, что объём тетраэдра с вершинами в концах этих отрезков не зависит от положения последних. Несколько стеклянных шариков разложено в три кучки. Мальчик, располагающий неограниченным запасом шариков, может за один ход взять по одному шарику из каждой кучки или же добавить из своего запаса в одну из кучек столько шариков, сколько в ней уже есть. Доказать, что за несколько ходов мальчик может добиться того, что в каждой кучке не останется ни одного шарика. |
Страница: 1 [Всего задач: 3]
Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны?
Страница: 1 [Всего задач: 3] |
|||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|