ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны две непересекающиеся окружности с центрами в точках O1 и O2. Пусть a1 и a2 — внутренние касательные к этим окружностям, a3 и a4 — внешние касательные к ним. Пусть, далее, a5 и a6 — касательные к окружности с центром в O1, проведённые из точки O2, a7 и a8 — касательные к окружности с центром в точке O2, проведённые из точки O1. Обозначим через O точку пересечения a1 и a2. Доказать, что с центром в точке O можно провести две окружности так, чтобы первая касалась a3 и a4, вторая касалась a5, a6, a7, a8, причём радиус второй в два раза меньше радиуса первой.
Даны две бочки бесконечно большой емкости. Можно ли, пользуясь двумя ковшами
емкостью
2 - Существуют ли два последовательных натуральных числа, сумма цифр каждого из которых делится на 7? Дан треугольник C1C2O. В нём проводится биссектриса C2C3, затем
в треугольнике C2C3O – биссектриса C3C4 и так далее. Доказать: произведение а) Сумма длин рёбер любого выпуклого многогранника больше утроенного диаметра. Докажите это. (Диаметром многогранника называют наибольшую из длин всевозможных отрезков с концами в вершинах многогранника.) б) Для любых двух в) Если в выпуклом многограннике разрезать два ребра, то для любых двух его г) Докажите, что в На прямой даны точки А, В и, кроме того, 57 точек, лежащих вне отрезка АВ. Каждая из этих 57 точек – либо красного, либо синего цвета. Рассмотрим следующие суммы: Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке? На доске выписаны числа от 1 до 50. Разрешено стереть любые два числа и вместо них записать одно число – модуль их разности. После 49-кратного повторения указанной процедуры на доске останется одно число. Какое это может быть число? Дано n чисел, x1, x2, ..., xn, при этом xk = ±1. Доказать, что если x1x2 + x2x3 + ... + xnx1 = 0, то n делится на 4. Дан выпуклый четырёхугольник ABCD. Середины сторон AB и CD обозначим соответственно через K и M, точку пересечения AM и DK — через O, точку пересечения BM и CK — через P. Доказать, что площадь четырёхугольника MOKP равна сумме площадей треугольников BPC и AOD. Доказать, что шахматную доску размером 4 на 4 нельзя обойти ходом шахматного коня, побывав на каждом поле ровно один раз. На лотерейном билете требуется отметить 8 клеточек из 64. Какова вероятность того, что после розыгрыша, в котором также будет выбрано 8 каких-то клеток из 64 (все такие возможности равновероятны), окажется, что угаданы В пространстве расположено n отрезков, никакие три из которых не параллельны одной плоскости. Для любых двух отрезков прямая, соединяющая их середины, перпендикулярна обоим отрезкам. При каком наибольшем n это возможно? |
Страница: 1 [Всего задач: 5]
В пространстве расположено n отрезков, никакие три из которых не параллельны одной плоскости. Для любых двух отрезков прямая, соединяющая их середины, перпендикулярна обоим отрезкам. При каком наибольшем n это возможно?
Существуют ли а) 6, б)15, в) 1000 таких различных натуральных чисел, что для любых двух a и b из них сумма a + b делится на разность a − b?
В волейбольном турнире каждые две команды сыграли по одному матчу.
В пространстве расположен выпуклый многогранник, все вершины которого находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет. (Целой называется точка, все три координаты которой – целые числа.) Доказать, что число вершин многогранника не превосходит восьми.
Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство P(x) > x. Определим последовательность {bn} следующим образом: b1 = 1, bk+1 = P(bk) для k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что P(x) = x + 1.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке