ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовало хотя бы четверо школьников этого класса. Докажите, что если многочлен f(x) степени n принимает целые значения в точках x = 0, 1, ..., n, то он принимает целые значения во всех целых точках. Даны точки A(2;-1;0) , B(3;2;1) , C(1;2;2) и D(-3;0;4) . Найдите расстояние между прямыми AB и CD . Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500. В выпуклом четырёхугольнике KLMN диагонали LN и KM равны стороне KL . Найдите угол LMN и сторону KL , если угол MNK – прямой, LM=3 , KN=4 . Та же задача, но требуется, чтобы сначала шли элементы,
меньшие b, затем равные b, а лишь затем
большие b.
Подойдя к незнакомому одноподъездному дому и думая, что на каждом этаже по шесть квартир, Аня решила, что нужная ей квартира находится на четвёртом этаже. Поднявшись на четвёртый этаж, Аня обнаружила, что нужная ей квартира действительно находится там, несмотря на то, что на каждом этаже – по семь квартир. Каким мог быть номер квартиры, в которую шла Аня? Можно ли на плоскости расположить бесконечное множество одинаковых кругов так, чтобы любая прямая пересекала не более двух кругов? |
Страница: << 1 2 3 >> [Всего задач: 13]
Докажите, что можно найти более тысячи троек натуральных чисел a, b, c, для которых выполняется равенство a15 + b15 = c16.
В пространстве расположено n отрезков, никакие три из которых не параллельны одной плоскости. Для любых двух отрезков прямая, соединяющая их середины, перпендикулярна обоим отрезкам. При каком наибольшем n это возможно?
Последовательность натуральных чисел {xn} строится по следующему правилу: x1 = 2, ..., xn = [1,5xn–1].
Можно ли на плоскости расположить бесконечное множество одинаковых кругов так, чтобы любая прямая пересекала не более двух кругов?
В волейбольном турнире каждые две команды сыграли по одному матчу.
Страница: << 1 2 3 >> [Всего задач: 13]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке