Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Докажите, что при простых  pi ≥ 5,  i = 1, 2, ..., 24,  число    делится нацело на 24.

Вниз   Решение


Решить в целых числах уравнение   = m.

ВверхВниз   Решение


Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон.
Доказать, что отношение каждой диагонали к соответствующей стороне равно  

ВверхВниз   Решение


Найти все натуральные числа n, для которых число  n·2n + 1  кратно 3.

ВверхВниз   Решение


Петя приобрёл в магазине вычислительный автомат, который за 5 к. умножает любое введённое в него число на 3, а за 2 к. прибавляет к любому числу 4. Петя хочет, начиная с единицы, которую можно ввести бесплатно, набрать на автомате число 1981 и затратить наименьшую сумму денег. Во сколько обойдутся ему вычисления? А что будет, если он захочет набрать число 1982?

ВверхВниз   Решение


В квадрате ABCD находятся 5 точек. Доказать, что расстояние между какими-то двумя из них не превосходит $ {\frac{1}{2}}$AC.

ВверхВниз   Решение


Известно, что при любом целом  K ≠ 27  число  a – K1964  делится без остатка на  27 – K. Найти a.

ВверхВниз   Решение


На какое наименьшее число непересекающихся тетраэдров можно разбить куб?

ВверхВниз   Решение


Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами.
Докажите, что произведение этих чисел не может оканчиваться на 1988.

ВверхВниз   Решение


Числа 1, 2, 3, ..., 1982 возводятся в квадрат и записываются подряд в некотором порядке.
Может ли полученное многозначное число быть полным квадратом?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 79407

Тема:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3
Классы: 8

В квадрате ABCD находятся 5 точек. Доказать, что расстояние между какими-то двумя из них не превосходит $ {\frac{1}{2}}$AC.
Прислать комментарий     Решение


Задача 79408

Темы:   [ Теория алгоритмов (прочее) ]
[ Обратный ход ]
Сложность: 3
Классы: 8

Петя приобрёл в магазине вычислительный автомат, который за 5 к. умножает любое введённое в него число на 3, а за 2 к. прибавляет к любому числу 4. Петя хочет, начиная с единицы, которую можно ввести бесплатно, набрать на автомате число 1981 и затратить наименьшую сумму денег. Во сколько обойдутся ему вычисления? А что будет, если он захочет набрать число 1982?
Прислать комментарий     Решение


Задача 79412

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9,10

Числа 1, 2, 3, ..., 1982 возводятся в квадрат и записываются подряд в некотором порядке.
Может ли полученное многозначное число быть полным квадратом?

Прислать комментарий     Решение

Задача 79413

Темы:   [ Две пары подобных треугольников ]
[ Пятиугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 9

Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон.
Доказать, что отношение каждой диагонали к соответствующей стороне равно  

Прислать комментарий     Решение

Задача 79415

Темы:   [ Арифметика остатков (прочее) ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9,10

Найти все натуральные числа n, для которых число  n·2n + 1  кратно 3.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .