Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Сфера касается боковых граней четырёхугольной пирамиды SABCD в точках, лежащих на рёбрах AB , BC , CD , DA . Известно, что высота пирамиды равна 2 , AB=6 , SA=5 , SB=7 , SC=2 . Найдите длины рёбер BC и CD , радиус сферы и двугранный угол при ребре SD .

Вниз   Решение


Дан параллелограмм ABCD. Прямая, параллельная AB, пересекает биссектрисы углов A и C в точках P и Q соответственно.
Докажите, что углы ADP и ABQ равны.

ВверхВниз   Решение


Сторона основания правильной шестиугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося сторон основания и продолжений боковых рёбер пирамиды.

ВверхВниз   Решение


Сторона основания правильной шестиугольной пирамиды равна a , боковое ребро равно b . Найдите радиус шара, касающегося всех рёбер пирамиды.

ВверхВниз   Решение


Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.

ВверхВниз   Решение


Основанием пирамиды SABC является правильный треугольник ABC со стороной 4 . Рёбра SB и SC равны. Шар касается сторон основания, плоскости грани SBC , а также ребра SA . Чему равен радиус шара, если SA=3 ?

ВверхВниз   Решение


Пусть I – центр вписанной окружности прямоугольного треугольника ABC, касающейся катетов AC и BC в точках B0 и A0 соответственно. Перпендикуляр, опущенный из A0 на прямую AI, и перпендикуляр, опущенный из B0 на прямую BI, пересекаются в точке P. Докажите, что прямые CP и AB перпендикулярны.

ВверхВниз   Решение


Клетчатая полоска 1×1000000 разбита на 100 сегментов. В каждой клетке записано целое число, причём в клетках, лежащих в одном сегменте, числа совпадают. В каждую клетку поставили по фишке. Затем сделали такую операцию: все фишки одновременно передвинули, каждую – на то количество клеток вправо, которое указано в её клетке (если число отрицательно, то фишка двигается влево); при этом оказалось, что в каждую клетку снова попало по фишке. Эту операцию повторяют много раз. Для каждой фишки первого сегмента подсчитали, через сколько операций она впервые снова окажется в этом сегменте. Докажите, что среди полученных чисел не более 100 различных.

ВверхВниз   Решение


Игра с «доминошками». Дана клетчатая доска 10×10. За ход разрешается покрыть любые две соседние клетки доминошкой (прямоугольником размером 1×2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход.

Вверх   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 391]      



Задача 79638

Темы:   [ Построения ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 6,7

На клетчатой бумаге нарисован прямоугольник 2 × 3. Отметьте вершины квадрата, стороны которого равны диагонали этого прямоугольника (не используя чертежных инструментов).
Прислать комментарий     Решение


Задача 86501

Темы:   [ Уравнения в целых числах ]
[ Произведения и факториалы ]
[ Перебор случаев ]
Сложность: 3-
Классы: 8,9

Найдите все натуральные m и n, для которых  m! + 12 = n².

Прислать комментарий     Решение

Задача 86555

Темы:   [ Замощения костями домино и плитками ]
[ Симметричная стратегия ]
Сложность: 3-
Классы: 6,7,8

Игра с «доминошками». Дана клетчатая доска 10×10. За ход разрешается покрыть любые две соседние клетки доминошкой (прямоугольником размером 1×2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход.
Прислать комментарий     Решение


Задача 86556

Темы:   [ Теория игр (прочее) ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Игра с тремя кучками камней. Имеется три кучки камней: в первой — 10, во второй — 15, в третьей — 20. За ход разрешается разбить любую кучку на две меньшие части; проигрывает тот, кто не сможет сделать хода.
Прислать комментарий     Решение


Задача 88037

Темы:   [ Четность и нечетность ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 3-
Классы: 6,7,8

На волшебной яблоне выросли 15 бананов и 20 апельсинов. Одновременно разрешается срывать один или два плода. Если сорвать один из плодов вырастет такой же, если сорвать сразу два одинаковых плода – вырастет апельсин, а если два разных – вырастет банан.
  а) В каком порядке надо срывать плоды, чтобы на яблоне остался ровно один плод?
  б) Можете ли вы определить, какой это будет плод?
  в) Можно ли срывать плоды так, чтобы на яблоне ничего не осталось?

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .