Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Постройте окружность, проходящую через данную точку A и касающуюся данной прямой в данной точке B.

Вниз   Решение


Царь пообещал награду тому, кто сможет на каменистом пустыре посадить красивый фруктовый сад. Об этом узнали два брата. Старший смог выкопать 18 ям (см. рис. слева). Больше нигде не удалось, только все лопаты сломал. Царь рассердился и посадил его в темницу. Тогда младший брат Иван предложил разместить яблони, груши и сливы в вершинах равных треугольников (см. рис. справа), а остальные ямы засыпать.

Царь ответил так:
— Хорошо, если деревьев каждого вида будет ровно по три и они будут расти в вершинах равных треугольников, выйдет красиво. Но три вида — слишком мало. Если кроме яблонь, груш и слив будут ещё и абрикосы — отпущу брата. Если добавишь пятый вид — черешню — заплачу за работу. Мне ещё миндаль нравится, но шесть треугольников ты тут не сможешь разместить.
— А если смогу?
— Тогда проси чего хочешь!
Иван задумался, не получить ли заодно и полцарства. Подумайте и вы: разместите как можно больше видов деревьев в вершинах равных треугольников. (Равенство треугольников означает равенство всех его сторон и углов, то есть точное совпадение при наложении; треугольники можно поворачивать и переворачивать. В одной яме может расти только одно дерево.)

ВверхВниз   Решение


На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это можно сделать?

ВверхВниз   Решение


Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
Перечислить все числа, обладающие этим свойством.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.

ВверхВниз   Решение


Фокусник научил Каштанку лаять столько раз, сколько он ей тайком от публики покажет. Когда Каштанка таким способом правильно ответила, сколько будет дважды два, он спрятал вкусный кекс в чемодан с кодовым замком и сказал:

— Восьмизначный код от чемодана — решение ребуса УЧУЙ = КЕ × КС. Надо заменить одинаковые буквы одинаковыми цифрами, а разные разными так, чтобы получилось верное равенство. Пролай нужное число раз на каждую из восьми букв, и получишь угощение.

Но тут случился конфуз. Каштанка от волнения на каждую букву лаяла на 1 раз больше, чем надо. Конечно, чемодан не открылся. Вдруг раздался детский голос: «Нечестно! Собака правильно решила ребус!» И действительно, если каждую цифру решения, которое имел в виду фокусник, увеличить на 1, получится ещё одно решение ребуса!

Можно ли восстановить: а) какое именно решение имел в виду фокусник; б) чему равнялось число УЧУЙ в этом решении?

ВверхВниз   Решение


Чему равна максимальная разность между соседними числами из числа тех, сумма цифр которых делится на 7?

ВверхВниз   Решение


Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.

ВверхВниз   Решение


На плоскости даны две перпендикулярные прямые. С помощью кронциркуля укажите на плоскости три точки, являющиеся вершинами равностороннего треугольника. Кронциркуль — это инструмент, похожий на циркуль, но на концах у него две иголки. Он позволяет переносить одинаковые расстояния, но не позволяет рисовать (процарапывать) окружности, дуги окружностей и делать засечки.

ВверхВниз   Решение


Пусть f(x) - некоторый многочлен, про который известно, что уравнение f(x)=x не имеет корней. Докажите, что тогда и уравнение f(f(x))=x не имеет корней.

ВверхВниз   Решение


Основание правильной треугольной пирамиды расположено в грани куба, одна из сторон основания совпадает с ребром куба, а вершина пирамиды лежит в противоположной грани куба. Найдите угол боковой грани пирамиды с плоскостью её основания.

ВверхВниз   Решение


Вершины пирамиды KLMN расположены в точках пересечения медиан граней некоторой правильной треугольной пирамиды со стороной основания a и боковым ребром b . Найдите полную поверхность пирамиды KLMN .

ВверхВниз   Решение


Числа a и b таковы, что первое уравнение системы
{ sin x+a=bx
cos x=b

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

ВверхВниз   Решение


В турнире по волейболу, прошедшем в один круг, 20% всех команд не выиграли ни одной игры. Сколько было команд?

ВверхВниз   Решение


Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите расстояние между диагональю основания и скрещивающимся с ней боковым ребром.

Вверх   Решение

Задачи

Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 6702]      



Задача 86906

Темы:   [ Линейные зависимости векторов ]
[ Векторное произведение ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна a , а расстояние между диагональю основания и скрещивающимся с ней боковым ребром равно . Найдите радиус описанной сферы.
Прислать комментарий     Решение


Задача 86910

Темы:   [ Правильный тетраэдр ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

Найдите угол между двумя скрещивающимися медианами двух боковых граней правильного тетраэдра.
Прислать комментарий     Решение


Задача 86912

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите площадь сечения пирамиды плоскостью, проведённой через середину высоты параллельно плоскости основания.
Прислать комментарий     Решение


Задача 86913

Темы:   [ Линейные зависимости векторов ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 8,9

Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите расстояние между диагональю основания и скрещивающимся с ней боковым ребром.
Прислать комментарий     Решение


Задача 86914

Темы:   [ Линейные зависимости векторов ]
[ Свойства сечений ]
Сложность: 3
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды равна 8, а высота равна 3. Найдите площадь сечения пирамиды плоскостью, проходящей через одну из сторон основания и середину противоположного бокового ребра.
Прислать комментарий     Решение


Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .