ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Занятие:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Решите в целых числах уравнение xφn+1 + yφn. Все считали, что Дракон был однооким, двуухим, треххвостым, четырехлапым и пятииглым. На самом деле, только четыре из этих определений выстраиваются в определенную закономерность, а одно — лишнее. Какое? Эта старинная задача была известна еще в Древнем Риме. Имеется 68 монет, причём известно, что любые две монеты различаются по весу.
Разобьём все натуральные числа на группы так, чтобы в первой группе было одно число, во второй — два, в третьей — три и т.д. Можно ли это сделать таким образом, чтобы из суммы чисел в каждой группе нацело извлекался корень седьмой степени? Семь девяток выписали подряд: 9 9 9 9 9 9 9. Поставьте между некоторыми из них знаки «+» или «−», чтобы получившееся выражение равнялось 1989. Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?
Круглый пирог режут следующим образом. Вырезают сектор с углом Страна Фарра расположена на 1 000 000 000 островов. Между некоторыми островами каждый день курсируют пароходы. Маршруты пароходов устроены так, что с каждого острова можно попасть на любой другой (возможно, за несколько дней). Шпион и майор Пронин могут совершать не более одного рейса в день на пароходе и не имеют никакой другой возможности попасть с острова на остров. Шпион не ездит на пароходе 13 числа каждого месяца, майор Пронин не суеверен и всегда знает, где находится шпион. Доказать, что майор сможет поймать шпиона (т.е. оказаться с ним на одном острове). На бумажной ленте напечатаны автобусные билеты с номерами от 000 000 до 999 999. Затем синей краской пометили те билеты, у которых сумма цифр, стоящих на чётных местах, равна сумме цифр, стоящих на нечётных местах. Какая будет наибольшая разность между номерами двух соседних синих билетов? На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 97]
Все считали, что Дракон был однооким, двуухим, треххвостым, четырехлапым и пятииглым. На самом деле, только четыре из этих определений выстраиваются в определенную закономерность, а одно — лишнее. Какое?
На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
Эта старинная задача была известна еще в Древнем Риме.
Семь девяток выписали подряд: 9 9 9 9 9 9 9. Поставьте между некоторыми из них знаки «+» или «−», чтобы получившееся выражение равнялось 1989.
Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 97]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке