Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 23 задачи
Версия для печати
Убрать все задачи

Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов?

Вниз   Решение


В шахматном кружке занимаются 2 девочки и 7 мальчиков. Для участия в соревновании необходимо составить команду из четырёх человек, в которую обязательно должна входить хотя бы одна девочка. Сколькими способами это можно сделать?

ВверхВниз   Решение


Докажите справедливость формулы  

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.

ВверхВниз   Решение


Сколькими способами можно разбить 10 человек на две баскетбольные команды по 5 человек в каждой?

ВверхВниз   Решение


Чему равны числа Фибоначчи с отрицательными номерами F-1, F-2, ..., F-n,...?


ВверхВниз   Решение


На гипотенузе BC прямоугольного треугольника ABC выбрана точка K так, что  AB = AK.  Отрезок AK пересекает биссектрису CL в её середине.
Найдите острые углы треугольника ABC.

ВверхВниз   Решение


Тождество Кассини. Докажите равенство

Fn + 1Fn - 1 - Fn2 = (- 1)n        (n > 0).


Будет ли тождество Кассини справедливо для всех целых n?

ВверхВниз   Решение


Однажды барон Мюнхгаузен, вернувшись с прогулки, рассказал, что половину пути он шёл со скоростью 5 км/ч, а половину времени, затраченного на прогулку, – со скоростью 6 км/ч. Не ошибся ли барон?

ВверхВниз   Решение


а) В магазине "Все для чая" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?

б) В магазине есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки?

в) В магазине по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?

ВверхВниз   Решение


В городе Ленинграде живет более 5 миллионов человек. Докажите, что у каких-то двух из них одинаковое число волос на голове, если известно, что у любого человека на голове менее миллиона волос.

ВверхВниз   Решение


Верно ли, что два графа изоморфны, если
  а) у них по 10 вершин, степень каждой из которых равна 9?
  б) у них по 8 вершин, степень каждой из которых равна 3?
  в) они связны, без циклов и содержат по 6 рёбер?

ВверхВниз   Решение


  а) В Стране Чудес есть три города A, B и C. Из города A в город B ведет 6 дорог, а из города B в город C – 4 дороги.
Сколькими cпособами можно проехать от A до C?
  б) В Стране Чудес построили еще один город D и несколько новых дорог – две из A в D и две из D в C.
Сколькими способами можно теперь добраться из города A в город C?

ВверхВниз   Решение


Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

ВверхВниз   Решение


В треугольнике ABC на стороне BC отмечена точка K. В треугольники ABK и ACK вписаны окружности, первая касается стороны BC в точке M, вторая – в точке N. Докажите, что  BM·CN > KM·KN.

ВверхВниз   Решение


Натуральные числа M и K отличаются перестановкой цифр.
Доказать, что
  а) сумма цифр числа 2M равна сумме цифр числа 2K;
  б) сумма цифр числа M/2  равна сумме цифр числа K/2  (если M и K чётны);
  в) сумма цифр числа 5M равна сумме цифр числа 5K.

ВверхВниз   Решение


Любое число $x$, написанное на доске, разрешается заменить либо на  3$x$ + 1,  либо на  [x/2].
Докажите, что если вначале написано число 1, то такими операциями можно получить любое натуральное число.

ВверхВниз   Решение


Ваня задумал два положительных числа x и y. Он записал числа  x + y,  x – y,  xy и x/y и показал их Пете, но не сказал, какое число какой операцией получено. Докажите, что Петя сможет однозначно восстановить x и y.

ВверхВниз   Решение


Автор: Салимов Р.

Первая производная бесконечной последовательности $a_1, a_2$, ... – это последовательность  $a'_n = a_{n+1} - a_n$  (где  $n$ = 1, 2, ...), а её k-я производная – это первая производная её ($k$–1)-й производной
($k$ = 2, 3, ...).  Назовём последовательность хорошей, если она и все её производные состоят из положительных чисел. Докажите, что если $a_1, a_2$, ... и $b_1, b_2$, ... – хорошие последовательности, то и $a_1b_1, a_2b_2$, ... – хорошая последовательность.

ВверхВниз   Решение


На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что  $AA_1 = BB_1 = CC_1 = R$,  где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.

ВверхВниз   Решение


Пусть N – натуральное число. Докажите, что в десятичной записи либо числа N, либо числа 3N найдётся одна из цифр 1, 2, 9.

ВверхВниз   Решение


В ящике лежат 111 шариков: красные, синие, зелёные и белые. Известно, что если, не заглядывая в ящик, вытащить 100 шариков, то среди них обязательно найдутся четыре шарика различных цветов. Какое наименьшее число шариков нужно вытащить, не заглядывая в ящик, чтобы среди них наверняка нашлись три шарика различных цветов?

ВверхВниз   Решение


Числа от 1 до 1000 расставлены по окружности.
Доказать, что их можно соединить 500 непересекающимися отрезками, разность чисел на концах которых (по модулю) не более 749.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 97802  (#1)

Темы:   [ Системы точек и отрезков (прочее) ]
[ Принцип крайнего (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Числа от 1 до 1000 расставлены по окружности.
Доказать, что их можно соединить 500 непересекающимися отрезками, разность чисел на концах которых (по модулю) не более 749.

Прислать комментарий     Решение

Задача 108604  (#2)

Темы:   [ Существование определенного интеграла ]
[ Теоремы Чевы и Менелая ]
[ Подобные треугольники (прочее) ]
[ Векторы сторон многоугольников ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC и AC треугольника ABC взяты точки P, M и K так, что отрезки AM, BK и CP пересекаются в одной точке и      Докажите, что P, M и K – середины сторон треугольника ABC.

Прислать комментарий     Решение

Задача 97804  (#3)

Темы:   [ Отношение порядка ]
[ Обход графов ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Перестановки и подстановки (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Коганов И.

В Швамбрании N городов, каждые два соединены дорогой. При этом дороги сходятся лишь в городах (нет перекрёстков, одна дорога поднята эстакадой над другой). Злой волшебник устанавливает на всех дорогах одностороннее движение таким образом, что если из города можно выехать, то в него нельзя вернуться. Доказать, что
  а) волшебник может это сделать;
  б) найдётся город, из которого можно добраться до всех, и найдётся город, из которого нельзя выехать;
  в) существует единственный путь, обходящий все города;
  г) волшебник может осуществить своё намерение N! способами.

Прислать комментарий     Решение

Задача 97807  (#4)

Тема:   [ Полуинварианты ]
Сложность: 4
Классы: 8,9

Автор: Анджанс А.

Несколько ребят стоят по кругу. У каждого есть некоторое количество конфет. Сначала у каждого чётное количество конфет. По команде каждый передает половину своих конфет стоящему справа. Если после этого у кого-нибудь оказалось нечётное количество конфет, то ему извне добавляется одна конфета. Это повторяется много раз. Доказать, что настанет время, когда у всех будет поровну конфет.

Прислать комментарий     Решение

Задача 97805  (#4)

Темы:   [ Целочисленные решетки (прочее) ]
[ Выигрышные и проигрышные позиции ]
Сложность: 5+
Классы: 9,10

Автор: Азов Д.Г.

  а) На бесконечном листе клетчатой бумаги двое играют в такую игру: первый окрашивает произвольную клетку в красный цвет; второй окрашивает произвольную неокрашенную клетку в синий цвет; затем первый окрашивает произвольную неокрашенную клетку в красный цвет, а второй еще одну неокрашенную клетку в синий цвет и т. д. Первый стремится к тому, чтобы центры каких-то четырёх красных клеток образовали квадрат со сторонами, параллельными линиям сетки, а второй хочет ему помешать. Может ли выиграть первый игрок?
  б) Каков будет ответ на этот вопрос, если второй игрок закрашивает синим цветом сразу по две клетки?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .