ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 108607  (#1)

Темы:   [ Перегруппировка площадей ]
[ Шестиугольники ]
Сложность: 3
Классы: 8,9

В выпуклом шестиугольнике ABCDEF отрезки AB и CF, CD и BE, EF и AD попарно параллельны.
Докажите, что площади треугольников ACE и BFD равны.

Прислать комментарий     Решение

Задача 97840  (#2)

Темы:   [ Обход графов ]
[ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).

Прислать комментарий     Решение

Задача 55391  (#3)

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC углы при вершинах B и C равны 40°, BD – биссектриса угла B. Докажите, что  BD + DA = BC.

Прислать комментарий     Решение

Задача 97843  (#4)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.

Прислать комментарий     Решение

Задача 97848  (#5)

Темы:   [ Инварианты ]
[ Деление с остатком ]
Сложность: 4-
Классы: 7,8,9

Автор: Ильичев В.

На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .