ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты. а) Внутри сферы находится некоторая точка A. Через A провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках. б) Внутри сферы находится икосаэдр, его центр A не обязательно совпадает с центром сферы. Лучи, выпущенные из A в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек. Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10. Назовём рассадку $N$ кузнечиков на прямой в различные её точки $k$-удачной, если кузнечики, сделав необходимое число ходов по правилам чехарды, могут добиться того, что сумма попарных расстояний между ними уменьшится хотя бы в $k$ раз. При каких $N\geqslant2$ существует рассадка, являющаяся $k$-удачной сразу для всех натуральных $k$? (В чехарде за ход один из кузнечиков прыгает в точку, симметричную ему относительно другого кузнечика.) Дана пирамида SA1A2...An, основание которой – выпуклый многоугольник A1A2...An. Для каждого i = 1, 2, ..., n в плоскости основания построили треугольник XiAiAi+1, равный треугольнику SAiAi+1 и лежащий по ту же сторону от прямой AiAi+1, что и основание (мы полагаем An+1 = A1). Докажите, что построенные треугольники покрывают всё основание. Существует ли треугольник с вершинами в узлах клетчатой бумаги, каждая сторона которого длиннее 100 клеточек, а площадь меньше площади одной клеточки? В окружность вписаны две равнобочные трапеции так, что каждая сторона одной
трапеции параллельна некоторой стороне другой. |
Страница: 1 2 >> [Всего задач: 6]
Можно ли подобрать такие два натуральных числа X и Y, что Y получается из X перестановкой цифр, и X + Y = 9...9 (1111 девяток)?
В окружность вписаны две равнобочные трапеции так, что каждая сторона одной
трапеции параллельна некоторой стороне другой.
Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света?
Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.
Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке