Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

В треугольнике ABC провели медианы BK и CN, пересекающиеся в точке M. Какое наибольшее количество сторон четырёхугольника ANMK может иметь длину 1?

Вниз   Решение


Даны 100 чисел. Когда каждое из них увеличили на 1, сумма их квадратов не изменилась. Каждое число ещё раз увеличили на 1.
Изменится ли сумма квадратов на этот раз, и если да, то на сколько?

ВверхВниз   Решение


Незнайка хвастается, что написал в ряд несколько единиц, поставил между каждыми соседними единицами знак "+" или "×", расставил скобки и получил выражение, значение которого равно 2014; более того, если в этом выражении заменить одновременно все знаки "+" на знаки "×", а знаки "×" на знаки "+", все равно получится 2014. Может ли он быть прав?

ВверхВниз   Решение


В турнире участвуют 100 борцов, все разной силы. Более сильный всегда побеждает более слабого. Борцы разбились на пары и провели поединки. Затем разбились на пары по-другому и снова провели поединки. Призы получили те, кто выиграл оба поединка. Каково наименьшее возможное количество призёров?

ВверхВниз   Решение


Автор: Фольклор

Доказать, что в вершинах многогранника можно расставить натуральные числа так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
Примечание: простых чисел бесконечно много.

ВверхВниз   Решение


Автор: Фольклор

Докажите, что из любых семи натуральных чисел (не обязательно идущих подряд) можно выбрать три числа, сумма которых делится на 3.

ВверхВниз   Решение


Автор: Назаров Ф.

Положительные числа a, b, c таковы, что  a ≥ b ≥ c  и  a + b + c ≤ 1.  Докажите, что  a² + 3b² + 5c² ≤ 1.

ВверхВниз   Решение


Автор: Фольклор

Известно, что доля блондинов среди голубоглазых больше чем доля блондинов среди всех людей.
Что больше: доля голубоглазых среди блондинов или доля голубоглазых среди всех людей?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 97977

Темы:   [ Задачи на смеси и концентрации ]
[ Обыкновенные дроби ]
Сложность: 2
Классы: 6,7,8

Автор: Фольклор

Известно, что доля блондинов среди голубоглазых больше чем доля блондинов среди всех людей.
Что больше: доля голубоглазых среди блондинов или доля голубоглазых среди всех людей?

Прислать комментарий     Решение

Задача 97979

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

Докажите, что из любых семи натуральных чисел (не обязательно идущих подряд) можно выбрать три числа, сумма которых делится на 3.

Прислать комментарий     Решение

Задача 97980

Темы:   [ Раскраски ]
[ Куб ]
Сложность: 2+
Классы: 7,8,9,10

Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.

Прислать комментарий     Решение

Задача 97989

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
[ Остовы многогранных фигур ]
[ Многогранники и многоугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Доказать, что в вершинах многогранника можно расставить натуральные числа так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
Примечание: простых чисел бесконечно много.

Прислать комментарий     Решение

Задача 97997

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3-
Классы: 7,8,9

Автор: Назаров Ф.

Положительные числа a, b, c таковы, что  a ≥ b ≥ c  и  a + b + c ≤ 1.  Докажите, что  a² + 3b² + 5c² ≤ 1.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .