ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В турнире по гандболу участвуют 20 команд. После того как каждая команда сыграла с каждой по разу, оказалось, что количество очков у всех команд разное. После того как каждая команда сыграла с каждой по второму разу, количество очков у всех команд стало одинаковым. В гандболе за победу команда получает 2 очка, за ничью 1 очко, за поражение — 0 очков. Верно ли, что найдутся две команды, по разу выигравшие друг у друга? На сторонах AB, BC и CD параллелограмма ABCD
взяты точки K, L и M соответственно, делящие эти стороны
в одинаковых отношениях. Пусть b, c, d — прямые,
проходящие через B, C, D параллельно прямым KL, KM, ML
соответственно. Докажите, что прямые b, c, d проходят
через одну точку.
a, b, c – такие три числа, что a + b + c = 0. Доказать, что в этом случае справедливо соотношение ab + ac + bc ≤ 0. Три бегуна – X, Y и Z – участвуют в забеге. Z задержался на старте и выбежал последним, а Y выбежал вторым. Z во время забега менялся местами с другими участниками 6 раз, а X – 5 раз. Известно, что Y финишировал раньше X. В каком порядке они финишировали? |
Страница: 1 [Всего задач: 4]
Три бегуна – X, Y и Z – участвуют в забеге. Z задержался на старте и выбежал последним, а Y выбежал вторым. Z во время забега менялся местами с другими участниками 6 раз, а X – 5 раз. Известно, что Y финишировал раньше X. В каком порядке они финишировали?
Длины сторон остроугольного треугольника – последовательные целые
числа.
Дано 1989 чисел. Известно, что сумма любых десяти из них положительна. Докажите, что сумма всех чисел тоже положительна.
Решить в натуральных числах уравнение:
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке