Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Калькулятор выполняет пять операций: сложение, вычитание, умножение, деление и извлечение квадратного корня. Найдите формулу, по которой на этом калькуляторе можно определить наименьшее из двух произвольных чисел a и b.

Вниз   Решение


Докажите, что если две стороны и угол против меньшей из них одного треугольника соответственно равны двум сторонам и углу против меньшей из них другого треугольника, то треугольники могут быть как равными, так и не равными.

ВверхВниз   Решение


Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году?

ВверхВниз   Решение


Целые числа a и b таковы, что  56a = 65b.  Докажите, что   a + b  – составное число.

ВверхВниз   Решение


Боковая сторона равнобедренной трапеции равна 41, высота равна 40 и средняя линия равна 45. Найдите основания.

ВверхВниз   Решение


Внутри окружности расположен выпуклый пятиугольник (вершины могут лежать как внутри, так и на окружности). Доказать, что хотя бы одна из его сторон не больше стороны правильного пятиугольника, вписанного в эту окружность.

ВверхВниз   Решение


Сторона основания правильной четырёхугольной пирамиды равна a , боковая грань образует с плоскостью основания угол 60o . Найдите радиус вписанной сферы.

ВверхВниз   Решение


Верно ли следующее утверждение: "Если четырёхугольник имеет ось симметрии, то это либо равнобедренная трапеция, либо прямоугольник, либо ромб"?

ВверхВниз   Решение


Из шести костяшек домино (см. рис.) сложите прямоугольник 3×4 так, чтобы во всех трёх строчках точек было поровну и во всех четырёх столбцах точек было тоже поровну.

ВверхВниз   Решение


Лиса и два медвежонка делят 100 конфет. Лиса раскладывает конфеты на три кучки; кому какая достанется - определяет жребий. Лиса знает, что если медвежатам достанется разное количество конфет, то они попросят её уравнять их кучки, и тогда она заберёт излишек себе. После этого все едят доставшиеся им конфеты.
  а) Придумайте, как Лисе разложить конфеты по кучкам так, чтобы съесть ровно 80 конфет (ни больше, ни меньше).
  б) Может ли Лиса сделать так, чтобы в итоге съесть ровно 65 конфет?

ВверхВниз   Решение


Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.

ВверхВниз   Решение


Острый угол прямоугольного треугольника равен 30°, а гипотенуза равна 8.
Найдите отрезки, на которые делит гипотенузу высота, проведённая из вершины прямого угла.

ВверхВниз   Решение


Можно ли расставить на окружности числа 1, 2...12 так, чтобы разность между двумя рядом стоящими числами была 3, 4 или 5?

ВверхВниз   Решение


Докажите, что из 53 различных натуральных чисел, не превосходящих в сумме 1990, всегда можно выбрать 2 числа, составляющих в сумме 53.

ВверхВниз   Решение


Длины a, b, c, d четырёх отрезков удовлетворяют неравенствам 0 < abc < dd < a + b + c. Можно ли из этих отрезков сложить трапецию?

ВверхВниз   Решение


Найдите наибольшее значение выражения

x$\displaystyle \sqrt{1-y^2}$ + y$\displaystyle \sqrt{1-x^2}$.

ВверхВниз   Решение


Автор: Фольклор

На гипотенузе AB прямоугольного треугольника ABC взяты такие точки M и N, что  BC = BM  и  AC = AN.  Докажите, что  ∠MCN = 45°.

Вверх   Решение

Задачи

Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 7526]      



Задача 55705

Темы:   [ Окружности (прочее) ]
[ Свойства симметрии и центра симметрии ]
Сложность: 3-
Классы: 8,9

Докажите, что при центральной симметрии окружность переходит в окружность.

Прислать комментарий     Решение


Задача 55718

Темы:   [ Правильный (равносторонний) треугольник ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 3-
Классы: 8,9

Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C.

Прислать комментарий     Решение

Задача 88037

Темы:   [ Четность и нечетность ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 3-
Классы: 6,7,8

На волшебной яблоне выросли 15 бананов и 20 апельсинов. Одновременно разрешается срывать один или два плода. Если сорвать один из плодов вырастет такой же, если сорвать сразу два одинаковых плода – вырастет апельсин, а если два разных – вырастет банан.
  а) В каком порядке надо срывать плоды, чтобы на яблоне остался ровно один плод?
  б) Можете ли вы определить, какой это будет плод?
  в) Можно ли срывать плоды так, чтобы на яблоне ничего не осталось?

Прислать комментарий     Решение

Задача 98196

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3-
Классы: 8,9,10,11

Автор: Фольклор

На гипотенузе AB прямоугольного треугольника ABC взяты такие точки M и N, что  BC = BM  и  AC = AN.  Докажите, что  ∠MCN = 45°.

Прислать комментарий     Решение

Задача 98378

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 3-
Классы: 6,7,8

Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.

Прислать комментарий     Решение

Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .