ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится? б) Тот же вопрос для четырёхзначных чисел. Решение |
Страница: << 1 2 3 >> [Всего задач: 12]
Можно ли в клетки квадрата 10×10 поставить некоторое количество звёздочек так, чтобы в каждом квадрате 2×2 было ровно две звёздочки, а в каждом прямоугольнике 3×1 – ровно одна звёздочка? (В каждой клетке может стоять не более одной звёздочки.)
Существуют ли такие целые числа x, y и z, для которых выполняется равенство: (x – y)³ + (y – z)³ + (z – x)³ = 2011?
Дан квадрат ABCD. На стороне AD внутрь квадрата построен равносторонний треугольник ADE. Диагональ AC пересекает сторону ED этого треугольника в точке F. Докажите, что CE = CF.
10 друзей послали друг другу праздничные открытки, так что каждый послал
пять открыток.
б) Тот же вопрос для четырёхзначных чисел.
Страница: << 1 2 3 >> [Всего задач: 12] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|