|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны? Пусть O — точка пересечения диагоналей четырехугольника ABCD, а E, F — точки пересечения продолжений сторон AB и CD, BC и AD соответственно. Прямая EO пересекает стороны AD и BC в точках K и L, а прямая FO пересекает стороны AB и CD в точках M и N. Докажите, что точка X пересечения прямых KN и LM лежит на прямой EF. Натуральные числа a, b, c, d таковы, что ad – bc > 1. Докажите, что хотя бы одно из чисел a, b, c, d не делится на ad – bc. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
В клетках таблицы 4×4 записаны числа так, что сумма соседей у каждого числа равна 1 (соседними считаются клетки, имеющие общую сторону).
Треугольник ABC вписан в окружность. Через точку A проведены хорды, пересекающие сторону BC в точках K и L и дугу BC в точках M и N.
Натуральные числа a, b, c, d таковы, что ad – bc > 1. Докажите, что хотя бы одно из чисел a, b, c, d не делится на ad – bc.
Натуральное число n разрешается заменить на число ab, если a + b = n и числа a и b натуральные.
В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|